Data-driven preventive maintenance for a heterogeneous machine portfolio

被引:2
|
作者
Deprez, Laurens [1 ,6 ]
Antonio, Katrien [2 ,3 ]
Arts, Joachim [1 ]
Boute, Robert [2 ,4 ,5 ]
机构
[1] Univ Luxembourg, Luxembourg Ctr Logist & Supply Chain Management, Esch Sur Alzette, Luxembourg
[2] Katholieke Univ Leuven, Fac Econ & Business, Leuven, Belgium
[3] Univ Amsterdam, Fac Econ & Business, Amsterdam, Netherlands
[4] Vlerick Business Sch, Technol & Operat Management Area, Ghent, Belgium
[5] Flanders Make, VCCM, Lommel, Belgium
[6] 6 Rue Richard Coudenhove Kalergi, L-1359 Luxembourg, Luxembourg
关键词
Preventive maintenance; Data pooling; Proportional hazards; Small data; SIMULATION; MODEL;
D O I
10.1016/j.orl.2023.01.006
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We describe a data-driven approach to optimize periodic maintenance policies for a heterogeneous portfolio with different machine profiles. When insufficient data are available per profile to assess failure intensities and costs accurately, we pool the data of all machine profiles and evaluate the effect of (observable) machine characteristics by calibrating appropriate statistical models. This reduces maintenance costs compared to a stratified approach that splits the data into subsets per profile and a uniform approach that treats all profiles the same.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页码:163 / 170
页数:8
相关论文
共 50 条
  • [21] A Survey on Data Mining for Data-Driven Industrial Assets Maintenance
    Coronel, Eduardo
    Baran, Benjamin
    Gardel, Pedro
    TECHNOLOGIES, 2025, 13 (02)
  • [22] Data-driven distributionally robust risk parity portfolio optimization
    Costa, Giorgio
    Kwon, Roy H.
    OPTIMIZATION METHODS & SOFTWARE, 2022, 37 (05): : 1876 - 1911
  • [23] Direct data-driven portfolio optimization with guaranteed shortfall probability
    Calafiore, Giuseppe Carlo
    AUTOMATICA, 2013, 49 (02) : 370 - 380
  • [24] Flexible Architecture for Data-Driven Predictive Maintenance with Support for Offline and Online Machine Learning Techniques
    Canito, Alda
    Fernandes, Marta
    Mourinho, Joao
    Tosun, Serkan
    Kaya, Kamer
    Turupcu, Aysegul
    Lagares, Angel
    Karabulut, Huseyin
    Marreiros, Goreti
    IECON 2021 - 47TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2021,
  • [25] Preventive maintenance for heterogeneous industrial vehicles with incomplete usage data
    Markudova, Dena
    Mishra, Sachit
    Cagliero, Luca
    Vassio, Luca
    Mellia, Marco
    Baralis, Elena
    Salvatori, Lucia
    Loti, Riccardo
    COMPUTERS IN INDUSTRY, 2021, 130
  • [26] Smart Remote Maintenance: Data-driven Remote Maintenance of Production Systems
    Can, Alperen
    Kolesnik, Marija
    Moltchanov, Anastasija
    Fisch, Jessica
    Krueger, Joerg
    ATP MAGAZINE, 2021, (08): : 49 - 51
  • [27] The framework for data-driven maintenance planning and problem solving in maintenance communities
    Valkokari, Pasi
    Ahonen, Toni
    Kortelainen, Helena
    Tervo, Jesse
    IFAC PAPERSONLINE, 2022, 55 (19): : 175 - 180
  • [28] Hybrid data-driven models of machine translation
    Groves, Declan
    Way, Andy
    MACHINE TRANSLATION, 2005, 19 (3-4) : 301 - 323
  • [29] SIMULATED PERFORMANCE OF A DATA-DRIVEN DATABASE MACHINE
    BIC, L
    HARTMANN, RL
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 1986, 3 (01) : 1 - 22
  • [30] Data-Driven Fault Detection of Electrical Machine
    Xu, Zhao
    Hu, Jinwen
    Hu, Changhua
    Nadarajan, Sivakumar
    Goh, Chi-keong
    Gupta, Amit
    2018 15TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS AND VISION (ICARCV), 2018, : 515 - 520