Boosting photo-assisted efficient electrochemical CO2 reduction reaction on transition metal single-atom catalysts supported on the C6N6 nanosheet

被引:2
|
作者
Dutta, Supriti [1 ]
Pati, Swapan K. [1 ]
机构
[1] Jawaharlal Nehru Ctr Adv Sci Res JNCASR, Sch Adv Mat, Theoret Sci Unit, Bangalore 560064, India
关键词
EVOLUTION REACTION; CARBON-DIOXIDE; ELECTROREDUCTION; ELECTROCATALYST; SELECTIVITY; GRAPHENE; NITRIDE; WATER; DFT;
D O I
10.1039/d3cp00933e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
CO2 reduction to value-added chemicals turns out to be a promising and efficient approach to resolve the increasing energy crisis and global warming. However, the catalytic efficiency of CO2 reduction reaction (CO2RR) to form C-1 products (CO, HCOOH, CH3OH, CH4) needs to be quite efficient. Herein with the help of density functional theory, CO2RR towards C-1 products was investigated on a transition metal (TM = Fe, Co, Ni) embedded C6N6 framework. The stable geometry of the catalysts, CO2 adsorption configurations, and CO2RR mechanisms were systematically studied for all the systems considered. The possible different adsorption configurations and adsorption energy calculations indicated that CO2 could be chemically adsorbed on the Co@C6N6 system. On the other hand, physical adsorption of CO2 is more preferable on Fe@C6N6 and Ni@C6N6 systems. As a competitive reaction, hydrogen evolution reaction (HER) was investigated and the systems were found to show more selectivity for CO2RR than for HER. OCHO formation turned out to be more favorable than COOH formation as initial protonation intermediates for CO2RR on the TM@C6N6 systems. The present work demonstrates that the Co@C6N6 catalyst can favor the electrocatalytic CO2RR among all systems. In addition, the photocatalytic activity of the systems was also investigated. The systems are found to be active for photoreduction of CO2 to CH3OH and CH4 in the presence of reducing agents such as H-2 and H2O as they possess appropriate absorption spectrum in the visible region as well as suitable band edge positions. These findings open a way for designing single atom catalysts for important catalytic reactions.
引用
收藏
页码:15788 / 15797
页数:10
相关论文
共 50 条
  • [41] Unraveling electrochemical CO reduction of the single-atom transition metals supported on N-doped phosphorene
    Wang, Wenjie
    Gao, Yan
    Li, Hongdong
    Tian, Fubo
    Li, Da
    Cui, Tian
    APPLIED SURFACE SCIENCE, 2021, 545
  • [42] Exploring Rational Design of Single-Atom Electrocatalysts for Efficient Electrochemical Reduction of CO2 to CO
    Ma, Joonhee
    Cho, Jin Hyuk
    Lee, Kangwon
    Kim, Soo Young
    KOREAN JOURNAL OF MATERIALS RESEARCH, 2023, 33 (02): : 29 - 46
  • [43] Reaction mechanism on Ni-C2-NS single-atom catalysis for the efficient CO2 reduction reaction
    Yuan, Qi
    Li, Youyong
    Yu, Peiping
    Ma, Bingyun
    Xu, Liang
    Sun, Qintao
    Yang, Hao
    Xie, Miao
    Cheng, Tao
    JOURNAL OF EXPERIMENTAL NANOSCIENCE, 2021, 16 (01) : 256 - 265
  • [44] Transition Metal-Nitrogen-Carbon Single-Atom Catalysts Enhanced CO2 Electroreduction Reaction: A Review
    Ji, Youan
    Du, Juan
    Chen, Aibing
    Gao, Xueqing
    Peng, Mengke
    CHEMSUSCHEM, 2025, 18 (03)
  • [45] Identification of Active Sites for CO2 Reduction on Graphene-Supported Single-Atom Catalysts
    Kang, Youngho
    Kang, Sungwoo
    Han, Seungwu
    CHEMSUSCHEM, 2021, 14 (11) : 2475 - 2480
  • [46] Electrochemical CO2 reduction on Single-Atom aluminum catalysts supported on graphene and N-doped Graphene: Mechanistic insights and hydration effects
    Wu, Shiuan-Yau
    Chuang, Tsai-Chun
    Chen, Hsin-Tsung
    APPLIED SURFACE SCIENCE, 2025, 681
  • [47] Theoretical screening of a graphyne-supported transition metal single-atom catalyst for the N2 reduction reaction
    Li, Min
    Fang, Qinglong
    Zhao, Xumei
    Xia, Caijuan
    Wang, Anxiang
    Xie, You
    Ma, Fei
    She, Jianmei
    Deng, Zhongxun
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2023, 25 (27) : 18224 - 18232
  • [48] A Graphene-Supported Single-Atom FeN5 Catalytic Site for Efficient Electrochemical CO2 Reduction
    Zhang, Huinian
    Li, Jing
    Xi, Shibo
    Du, Yonghua
    Hai, Xiao
    Wang, Junying
    Xu, Haomin
    Wu, Gang
    Zhang, Jia
    Lu, Jiong
    Wang, Junzhong
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (42) : 14871 - 14876
  • [49] Screening of single-atom catalysts of transition metal supported on MoSe2 for high-efficiency nitrogen reduction reaction
    Hou, Pengfei
    Huang, Yuhong
    Ma, Fei
    Zhu, Gangqiang
    Du, Ruhai
    Wei, Xiumei
    Zhang, Jianmin
    Wang, Min
    MOLECULAR CATALYSIS, 2023, 537
  • [50] Trends of Electrochemical CO2 Reduction Reaction on Transition Metal Oxide Catalysts
    Tayyebi, Ebrahim
    Hussain, Javed
    Abghoui, Younes
    Skulason, Egill
    JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (18): : 10078 - 10087