Boosting photo-assisted efficient electrochemical CO2 reduction reaction on transition metal single-atom catalysts supported on the C6N6 nanosheet

被引:2
|
作者
Dutta, Supriti [1 ]
Pati, Swapan K. [1 ]
机构
[1] Jawaharlal Nehru Ctr Adv Sci Res JNCASR, Sch Adv Mat, Theoret Sci Unit, Bangalore 560064, India
关键词
EVOLUTION REACTION; CARBON-DIOXIDE; ELECTROREDUCTION; ELECTROCATALYST; SELECTIVITY; GRAPHENE; NITRIDE; WATER; DFT;
D O I
10.1039/d3cp00933e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
CO2 reduction to value-added chemicals turns out to be a promising and efficient approach to resolve the increasing energy crisis and global warming. However, the catalytic efficiency of CO2 reduction reaction (CO2RR) to form C-1 products (CO, HCOOH, CH3OH, CH4) needs to be quite efficient. Herein with the help of density functional theory, CO2RR towards C-1 products was investigated on a transition metal (TM = Fe, Co, Ni) embedded C6N6 framework. The stable geometry of the catalysts, CO2 adsorption configurations, and CO2RR mechanisms were systematically studied for all the systems considered. The possible different adsorption configurations and adsorption energy calculations indicated that CO2 could be chemically adsorbed on the Co@C6N6 system. On the other hand, physical adsorption of CO2 is more preferable on Fe@C6N6 and Ni@C6N6 systems. As a competitive reaction, hydrogen evolution reaction (HER) was investigated and the systems were found to show more selectivity for CO2RR than for HER. OCHO formation turned out to be more favorable than COOH formation as initial protonation intermediates for CO2RR on the TM@C6N6 systems. The present work demonstrates that the Co@C6N6 catalyst can favor the electrocatalytic CO2RR among all systems. In addition, the photocatalytic activity of the systems was also investigated. The systems are found to be active for photoreduction of CO2 to CH3OH and CH4 in the presence of reducing agents such as H-2 and H2O as they possess appropriate absorption spectrum in the visible region as well as suitable band edge positions. These findings open a way for designing single atom catalysts for important catalytic reactions.
引用
收藏
页码:15788 / 15797
页数:10
相关论文
共 50 条
  • [21] Structural rule of N-coordinated single-atom catalysts for electrochemical CO2 reduction
    Lou, Zhenxin
    Li, Wenjing
    Yuan, Haiyang
    Hou, Yu
    Yang, Huagui
    Wang, Haifeng
    JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (07) : 3585 - 3594
  • [22] Single transition metal atom catalysts on Ti2CN2 for efficient CO2 reduction reaction
    Li, Feifei
    Ai, Haoqiang
    Shi, Changmin
    Lo, Kin Ho
    Pan, Hui
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (24) : 12886 - 12896
  • [23] Microenvironment Modulation in Carbon-Supported Single-Atom Catalysts for Efficient Electrocatalytic CO2 Reduction
    Song, Pengyu
    Zhu, Pan
    Su, Xiaoran
    Hou, Mengyun
    Zhao, Di
    Zhang, Jiatao
    CHEMISTRY-AN ASIAN JOURNAL, 2022, 17 (20)
  • [24] The atomic-level regulation of single-atom site catalysts for the electrochemical CO2 reduction reaction
    Qu, Qingyun
    Ji, Shufang
    Chen, Yuanjun
    Wang, Dingsheng
    Li, Yadong
    CHEMICAL SCIENCE, 2021, 12 (12) : 4201 - 4215
  • [25] Rational design of graphdiyne-based single-atom catalysts for electrochemical CO2 reduction reaction
    Jiang, Liyun
    Zhao, Mengdie
    Yu, Qi
    RSC ADVANCES, 2024, 14 (37) : 27365 - 27371
  • [26] Atomic Tuning of Single-Atom Fe-N-C Catalysts with Phosphorus for Robust Electrochemical CO2 Reduction
    Li, Ke
    Zhang, Shengbo
    Zhang, Xiuli
    Liu, Shuang
    Jiang, Haosong
    Jiang, Taoli
    Shen, Chunyue
    Yu, Yi
    Chen, Wei
    NANO LETTERS, 2022, 22 (04) : 1557 - 1565
  • [27] Transition metal-based single-atom catalysts (TM-SACs); rising materials for electrochemical CO2 reduction
    Mohanty, Bishnupad
    Basu, Suddhasatwa
    Jena, Bikash Kumar
    JOURNAL OF ENERGY CHEMISTRY, 2022, 70 : 444 - 471
  • [28] Tuning Transition Metal 3d Spin state on Single-atom Catalysts for Selective Electrochemical CO2 Reduction
    Zang, Yipeng
    Liu, Yan
    Lu, Ruihu
    Yang, Qin
    Wang, Bingqing
    Zhang, Mingsheng
    Mao, Yu
    Wang, Ziyun
    Lum, Yanwei
    ADVANCED MATERIALS, 2025,
  • [29] Transition metal-based single-atom catalysts(TM-SACs);rising materials for electrochemical CO2 reduction
    Bishnupad Mohanty
    Suddhasatwa Basu
    Bikash Kumar Jena
    Journal of Energy Chemistry, 2022, 70 (07) : 444 - 471
  • [30] Regulating Efficient and Selective Single-atom Catalysts for Electrocatalytic CO2 Reduction
    Wang, Shuo
    Feng, Shao-Yang
    Zhao, Cong-Cong
    Zhao, Ting-Ting
    Tian, Yu
    Yan, Li-Kai
    CHEMPHYSCHEM, 2023, 24 (19)