Zonotopal Algebras, Orbit Harmonics, and Donaldson-Thomas Invariants of Symmetric Quivers

被引:2
|
作者
Reineke, Markus [1 ]
Rhoades, Brendon [2 ]
Tewari, Vasu [3 ]
机构
[1] Ruhr Univ Bochum, Fac Math, Bochum, Germany
[2] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
[3] Univ Hawaii Manoa, Dept Math, Honolulu, HI 96822 USA
关键词
COHOMOLOGICAL HALL ALGEBRA; REPRESENTATIONS; COMBINATORICS; POLYNOMIALS; SPACES; TREES; RING;
D O I
10.1093/imrn/rnad033
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We apply the method of orbit harmonics to the set of break divisors and orientable divisors on graphs to obtain the central and external zonotopal algebras, respectively. We then relate a construction of Efimov in the context of cohomological Hall algebras to the central zonotopal algebra of a graph G(Q,?) constructed from a symmetric quiver Q with enough loops and a dimension vector ?. This provides a concrete combinatorial perspective on the former work, allowing us to identify the quantum Donaldson-Thomas (DT) invariants as the Hilbert series of the space of S?-invariants of the Postnikov- Shapiro slim subgraph space attached to G(Q,?). The connection with orbit harmonics in turn allows us to give a manifestly nonnegative combinatorial interpretation to numerical DT invariants as the number of S?-orbits under the permutation action on the set of break divisors on G. We conclude with several representation-theoretic consequences, whose combinatorial ramifications may be of independent interest.
引用
收藏
页码:20169 / 20210
页数:42
相关论文
共 50 条
  • [41] GENERALIZED DONALDSON-THOMAS INVARIANTS ON THE LOCAL PROJECTIVE PLANE
    Toda, Yukinobu
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2017, 106 (02) : 341 - 369
  • [42] Non-commutative deformations and Donaldson-Thomas invariants
    Toda, Yukinobu
    ALGEBRAIC GEOMETRY: SALT LAKE CITY 2015, PT 1, 2018, 97 : 611 - 631
  • [43] Motivic Donaldson-Thomas invariants of some quantized threefolds
    Cazzaniga, Alberto
    Morrison, Andrew
    Pym, Brent
    Szendroi, Balazs
    JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2017, 11 (03) : 1115 - 1139
  • [44] Koszul algebras and Donaldson–Thomas invariants
    Vladimir Dotsenko
    Evgeny Feigin
    Markus Reineke
    Letters in Mathematical Physics, 2022, 112
  • [45] DONALDSON-THOMAS INVARIANTS OF ABELIAN THREEFOLDS AND BRIDGELAND STABILITY CONDITIONS
    Oberdieck, Georg
    Piyaratne, Dulip
    Toda, Yukinobu
    JOURNAL OF ALGEBRAIC GEOMETRY, 2022, 31 (01) : 13 - 73
  • [46] The elliptic genus from split flows and Donaldson-Thomas invariants
    Collinucci, Andres
    Wyder, Thomas
    JOURNAL OF HIGH ENERGY PHYSICS, 2010, (05):
  • [47] Elliptic non-Abelian Donaldson-Thomas invariants of ℂ3
    Francesco Benini
    Giulio Bonelli
    Matteo Poggi
    Alessandro Tanzini
    Journal of High Energy Physics, 2019
  • [48] The elliptic genus from split flows and Donaldson-Thomas invariants
    Andrés Collinucci
    Thomas Wyder
    Journal of High Energy Physics, 2010
  • [49] Motivic Donaldson-Thomas invariants of the conifold and the refined topological vertex
    Morrison, Andrew
    Mozgovoy, Sergey
    Nagao, Kentaro
    Szendroi, Balazs
    ADVANCES IN MATHEMATICS, 2012, 230 (4-6) : 2065 - 2093
  • [50] On some computations of higher rank refined Donaldson-Thomas invariants
    Chuang, Wu-yen
    Wang, Chien-hsun
    JOURNAL OF HIGH ENERGY PHYSICS, 2014, (12):