Zonotopal Algebras, Orbit Harmonics, and Donaldson-Thomas Invariants of Symmetric Quivers

被引:2
|
作者
Reineke, Markus [1 ]
Rhoades, Brendon [2 ]
Tewari, Vasu [3 ]
机构
[1] Ruhr Univ Bochum, Fac Math, Bochum, Germany
[2] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
[3] Univ Hawaii Manoa, Dept Math, Honolulu, HI 96822 USA
关键词
COHOMOLOGICAL HALL ALGEBRA; REPRESENTATIONS; COMBINATORICS; POLYNOMIALS; SPACES; TREES; RING;
D O I
10.1093/imrn/rnad033
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We apply the method of orbit harmonics to the set of break divisors and orientable divisors on graphs to obtain the central and external zonotopal algebras, respectively. We then relate a construction of Efimov in the context of cohomological Hall algebras to the central zonotopal algebra of a graph G(Q,?) constructed from a symmetric quiver Q with enough loops and a dimension vector ?. This provides a concrete combinatorial perspective on the former work, allowing us to identify the quantum Donaldson-Thomas (DT) invariants as the Hilbert series of the space of S?-invariants of the Postnikov- Shapiro slim subgraph space attached to G(Q,?). The connection with orbit harmonics in turn allows us to give a manifestly nonnegative combinatorial interpretation to numerical DT invariants as the number of S?-orbits under the permutation action on the set of break divisors on G. We conclude with several representation-theoretic consequences, whose combinatorial ramifications may be of independent interest.
引用
收藏
页码:20169 / 20210
页数:42
相关论文
共 50 条
  • [1] ON THE MOTIVIC DONALDSON-THOMAS INVARIANTS OF QUIVERS WITH POTENTIALS
    Mozgovoy, Sergey
    MATHEMATICAL RESEARCH LETTERS, 2013, 20 (01) : 121 - 132
  • [2] Semistable Chow-Hall algebras of quivers and quantized Donaldson-Thomas invariants
    Franzen, Hans
    Reineke, Markus
    ALGEBRA & NUMBER THEORY, 2018, 12 (05) : 1001 - 1025
  • [3] Hall algebras and Donaldson-Thomas invariants
    Bridgeland, Tom
    ALGEBRAIC GEOMETRY: SALT LAKE CITY 2015, PT 1, 2018, 97 : 75 - 100
  • [4] Koszul algebras and Donaldson-Thomas invariants
    Dotsenko, Vladimir
    Feigin, Evgeny
    Reineke, Markus
    LETTERS IN MATHEMATICAL PHYSICS, 2022, 112 (05)
  • [5] The flow tree formula for Donaldson-Thomas invariants of quivers with potentials
    Arguz, Hulya
    Bousseau, Pierrick
    COMPOSITIO MATHEMATICA, 2022, 158 (12) : 2206 - 2249
  • [6] Introduction to Donaldson-Thomas invariants
    Mozgovoy, Sergey
    ADVANCES IN REPRESENTATION THEORY OF ALGEBRAS, 2013, : 195 - 210
  • [7] Instantons and Donaldson-Thomas invariants
    Cirafici, Michele
    Sinkovics, Annamaria
    Szabo, Richard J.
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2008, 56 (7-9): : 849 - 855
  • [8] Donaldson-Thomas invariants and flops
    Calabrese, John
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2016, 716 : 103 - 145
  • [9] Donaldson-Thomas invariants and flops
    Calabrese, John
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2017, 724 : 245 - 250
  • [10] Local Contributions to Donaldson-Thomas Invariants
    Ricolfi, Andrea T.
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2018, 2018 (19) : 5995 - 6025