INTEGRATED DATA CUBES FOR LARGE-SCALE SPATIOTEMPORAL ANALYSIS OF REMOTE SENSING DATA IN ARCGIS

被引:0
|
作者
Xu, Hong [1 ]
Zhan, Shengan [1 ]
Jain, Amit [1 ]
Gopaiah, Manne [1 ]
机构
[1] ESRI, Redlands, CA 92373 USA
关键词
Time Series; Cube; Imagery; Altimetry; CRF; Mosaic Dataset; Trajectory Dataset;
D O I
10.1109/IGARSS52108.2023.10282095
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Advancements in sensor technology have led to significant growth in the volume and variety of geospatial data. Optical, radar, lidar, and sonar sensor technologies have presented us with valuable opportunities to understand our changing world. However, a key challenge still lies in developing data models that can efficiently manage diverse types of spatial and temporal data collected from these sensors to enable information extraction. In this paper, we describe the integrated data cubes within ArcGIS that effectively handle spatial and temporal data. Our approach includes a mosaic dataset for managing satellite time series and gridded climate data, a cloud raster format (CRF) file for storing pixel-aligned analysis-ready data, and a trajectory dataset for managing points from altimetry sensors. We present several use cases to demonstrate the analysis capabilities based on these data models.
引用
收藏
页码:5115 / 5118
页数:4
相关论文
共 50 条
  • [1] Large-Scale Crop Mapping Based on Multisource Remote Sensing Intelligent Interpretation: A Spatiotemporal Data Cubes Approach
    Sun, Jialin
    Yao, Xiaochuang
    Yan, Shuai
    Xiong, Quan
    Li, Guoqing
    Huang, Jianxi
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 13077 - 13088
  • [2] Quantifying large-scale ecosystem stability with remote sensing data
    White, Hannah J.
    Gaul, Willson
    Sadykova, Dinara
    Leon-Sanchez, Lupe
    Caplat, Paul
    Emmerson, Mark C.
    Yearsley, Jon M.
    [J]. REMOTE SENSING IN ECOLOGY AND CONSERVATION, 2020, 6 (03) : 354 - 365
  • [3] Large-scale analysis of integrated neurogenomic data
    Schork, Nicholas
    [J]. BIOLOGICAL PSYCHIATRY, 2007, 61 (08) : 2S - 2S
  • [4] A 3-D Spatiotemporal Model for Remote Sensing Data Cubes
    Bayer, Debora M.
    Bayer, Fabio M.
    Gamba, Paolo
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (02): : 1082 - 1093
  • [5] Incremental Learning for Semantic Segmentation of Large-Scale Remote Sensing Data
    Tasar, Onur
    Tarabalka, Yuliya
    Alliez, Pierre
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2019, 12 (09) : 3524 - 3537
  • [6] Spatiotemporal Analysis Using Remote Sensing Data
    Kalyani, P.
    Govindarajulu, P.
    [J]. INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2013, 13 (12): : 28 - 34
  • [7] Large-Scale Analysis of Soccer Matches using Spatiotemporal Tracking Data
    Bialkowski, Alina
    Lucey, Patrick
    Carr, Peter
    Yue, Yisong
    Sridharan, Sridha
    Matthews, Iain
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2014, : 725 - 730
  • [8] Large-scale mapping of leaf area index using remote sensing data
    Ishii, T
    Nashimoto, M
    Shimogaki, H
    [J]. SOIL-VEGETATION-ATMOSPHERE TRANSFER SCHEMES AND LARGE-SCALE HYDROLOGICAL MODELS, 2001, (270): : 287 - 290
  • [9] Visual Cascade Analytics of Large-Scale Spatiotemporal Data
    Deng, Zikun
    Weng, Di
    Liang, Yuxuan
    Bao, Jie
    Zheng, Yu
    Schreck, Tobias
    Xu, Mingliang
    Wu, Yingcai
    [J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2022, 28 (06) : 2486 - 2499
  • [10] Spatiotemporal Anomaly Detection for Large-Scale Sensor Data
    Zhao, Minglu
    Takizawa, Hiroyuki
    Soma, Tomoya
    [J]. PAAP 2021: 2021 12TH INTERNATIONAL SYMPOSIUM ON PARALLEL ARCHITECTURES, ALGORITHMS AND PROGRAMMING, 2021, : 162 - 168