INTEGRATED DATA CUBES FOR LARGE-SCALE SPATIOTEMPORAL ANALYSIS OF REMOTE SENSING DATA IN ARCGIS

被引:0
|
作者
Xu, Hong [1 ]
Zhan, Shengan [1 ]
Jain, Amit [1 ]
Gopaiah, Manne [1 ]
机构
[1] ESRI, Redlands, CA 92373 USA
关键词
Time Series; Cube; Imagery; Altimetry; CRF; Mosaic Dataset; Trajectory Dataset;
D O I
10.1109/IGARSS52108.2023.10282095
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Advancements in sensor technology have led to significant growth in the volume and variety of geospatial data. Optical, radar, lidar, and sonar sensor technologies have presented us with valuable opportunities to understand our changing world. However, a key challenge still lies in developing data models that can efficiently manage diverse types of spatial and temporal data collected from these sensors to enable information extraction. In this paper, we describe the integrated data cubes within ArcGIS that effectively handle spatial and temporal data. Our approach includes a mosaic dataset for managing satellite time series and gridded climate data, a cloud raster format (CRF) file for storing pixel-aligned analysis-ready data, and a trajectory dataset for managing points from altimetry sensors. We present several use cases to demonstrate the analysis capabilities based on these data models.
引用
收藏
页码:5115 / 5118
页数:4
相关论文
共 50 条
  • [21] Technique of large-scale soil mapping in basaltic terrain using satellite remote sensing data
    Srivastava, R
    Saxena, RK
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2004, 25 (04) : 679 - 688
  • [22] Spatial-feature data cube for spatiotemporal remote sensing data processing and analysis
    Xu, Dong
    Ma, Yan
    Yan, Jining
    Liu, Peng
    Chen, Lajiao
    COMPUTING, 2020, 102 (06) : 1447 - 1461
  • [23] Spatial-feature data cube for spatiotemporal remote sensing data processing and analysis
    Dong Xu
    Yan Ma
    Jining Yan
    Peng Liu
    Lajiao Chen
    Computing, 2020, 102 : 1447 - 1461
  • [24] A robust large-scale surface water mapping framework with high spatiotemporal resolution based on the fusion of multi-source remote sensing data
    Li, Junjie
    Li, Linyi
    Song, Yanjiao
    Chen, Jiaming
    Wang, Zhe
    Bao, Yi
    Zhang, Wen
    Meng, Lingkui
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2023, 118
  • [25] XLinkDB 2.0: integrated, large-scale structural analysis of protein crosslinking data
    Schweppe, Devin K.
    Zheng, Chunxiang
    Chavez, Juan D.
    Navare, Arti T.
    Wu, Xia
    Eng, Jimmy K.
    Bruce, James E.
    BIOINFORMATICS, 2016, 32 (17) : 2716 - 2718
  • [26] Integrated Analysis of Multiscale Large-Scale Biological Data for Investigating Human Disease
    Huang, Tao
    Chen, Lei
    Zheng, Mingyue
    Song, Jiangning
    BIOMED RESEARCH INTERNATIONAL, 2015, 2015
  • [27] The integrated delivery of large-scale data mining: The ACSys Data Mining Project
    Williams, G
    Altas, I
    Bakin, S
    Christen, P
    Hegland, M
    Marquez, A
    Milne, P
    Nagappan, R
    Roberts, S
    LARGE-SCALE PARALLEL DATA MINING, 2000, 1759 : 24 - 54
  • [28] Combining Geostatistics and Remote Sensing Data to Improve Spatiotemporal Analysis of Precipitation
    Varouchakis, Emmanouil A.
    Kaminska-Chuchmala, Anna
    Kowalik, Grzegorz
    Spanoudaki, Katerina
    Grana, Manuel
    SENSORS, 2021, 21 (09)
  • [29] Spatiotemporal Data Cube Modeling for Integrated Analysis of Multi-Source Sensing Data
    Zhao, Jing
    Yue, Peng
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 4791 - 4794
  • [30] Large-Scale Data Analysis on Cloud Systems
    Marozzo, Fabrizio
    Talia, Domenico
    Trunfio, Paolo
    ERCIM NEWS, 2012, (89): : 26 - 27