Large-Scale Analysis of Soccer Matches using Spatiotemporal Tracking Data

被引:72
|
作者
Bialkowski, Alina [1 ,2 ]
Lucey, Patrick [1 ]
Carr, Peter [1 ]
Yue, Yisong [1 ,3 ]
Sridharan, Sridha [2 ]
Matthews, Iain [1 ]
机构
[1] Disney Res, Pittsburgh, PA 15213 USA
[2] Queensland Univ Technol, Brisbane, Qld 4001, Australia
[3] CALTECH, Pasadena, CA 91125 USA
关键词
D O I
10.1109/ICDM.2014.133
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Although the collection of player and ball tracking data is fast becoming the norm in professional sports, large-scale mining of such spatiotemporal data has yet to surface. In this paper, given an entire season's worth of player and ball tracking data from a professional soccer league (approximate to 400,000,000 data points), we present a method which can conduct both individual player and team analysis. Due to the dynamic, continuous and multiplayer nature of team sports like soccer, a major issue is aligning player positions over time. We present a "role-based" representation that dynamically updates each player's relative role at each frame and demonstrate how this captures the short-term context to enable both individual player and team analysis. We discover role directly from data by utilizing a minimum entropy data partitioning method and show how this can be used to accurately detect and visualize formations, as well as analyze individual player behavior.
引用
收藏
页码:725 / 730
页数:6
相关论文
共 50 条
  • [1] SoccerCPD: Formation and Role Change-Point Detection in Soccer Matches Using Spatiotemporal Tracking Data
    Kim, Hyunsung
    Kim, Bit
    Chung, Dongwook
    Yoon, Jinsung
    Ko, Sang-Ki
    [J]. PROCEEDINGS OF THE 28TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2022, 2022, : 3146 - 3156
  • [2] Large-Scale Analysis of Formations in Soccer
    Wei, Xinyu
    Sha, Long
    Lucey, Patrick
    Morgan, Stuart
    Sridharan, Sridha
    [J]. 2013 INTERNATIONAL CONFERENCE ON DIGITAL IMAGE COMPUTING: TECHNIQUES & APPLICATIONS (DICTA), 2013, : 133 - 140
  • [3] The tactics of successful attacks in professional association football: large-scale spatiotemporal analysis of dynamic subgroups using position tracking data
    Goes, Floris R.
    Brink, Michel S.
    Elferink-Gemser, Marije T.
    Kempe, Matthias
    Lemmink, Koen A. P. M.
    [J]. JOURNAL OF SPORTS SCIENCES, 2021, 39 (05) : 523 - 532
  • [4] INTEGRATED DATA CUBES FOR LARGE-SCALE SPATIOTEMPORAL ANALYSIS OF REMOTE SENSING DATA IN ARCGIS
    Xu, Hong
    Zhan, Shengan
    Jain, Amit
    Gopaiah, Manne
    [J]. IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 5115 - 5118
  • [5] Visual Cascade Analytics of Large-Scale Spatiotemporal Data
    Deng, Zikun
    Weng, Di
    Liang, Yuxuan
    Bao, Jie
    Zheng, Yu
    Schreck, Tobias
    Xu, Mingliang
    Wu, Yingcai
    [J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2022, 28 (06) : 2486 - 2499
  • [6] Spatiotemporal Anomaly Detection for Large-Scale Sensor Data
    Zhao, Minglu
    Takizawa, Hiroyuki
    Soma, Tomoya
    [J]. PAAP 2021: 2021 12TH INTERNATIONAL SYMPOSIUM ON PARALLEL ARCHITECTURES, ALGORITHMS AND PROGRAMMING, 2021, : 162 - 168
  • [7] Large-scale data analysis using the Wigner function
    Earnshaw, R. A.
    Lei, C.
    Li, J.
    Mugassabi, S.
    Vourdas, A.
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2012, 391 (07) : 2401 - 2407
  • [8] Large-Scale Data Analysis Using Heuristic Methods
    Dzemyda, Gintautas
    Sakalauskas, Leonidas
    [J]. INFORMATICA, 2011, 22 (01) : 1 - 10
  • [9] Large-Scale Spatiotemporal Fracture Data Completion in Sparse CrowdSensing
    Wang, En
    Zhang, Mijia
    Yang, Bo
    Yang, Yongjian
    Wu, Jie
    [J]. IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (07) : 7585 - 7601
  • [10] Physics-Guided AI for Large-Scale Spatiotemporal Data
    Yu, Rose
    Perdikaris, Paris
    Karpatne, Anuj
    [J]. KDD '21: PROCEEDINGS OF THE 27TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2021, : 4088 - 4089