The most general structure of graphs with hamiltonian or hamiltonian connected square

被引:0
|
作者
Ekstein, Jan [1 ,2 ]
Fleischner, Herbert [3 ]
机构
[1] Univ West Bohemia, Fac Appl Sci, Dept Math, Tech 8, Plzen 30614, Czech Republic
[2] Univ West Bohemia, Fac Appl Sci, European Ctr Excellence NTIS New Technol Informat, Tech 8, Plzen 30614, Czech Republic
[3] Vienna Univ Technol, Inst L & Computat, Algorithms & Complex Grp, Favoritenstr 9-11, A-1040 Vienna, Austria
关键词
Hamiltonian cycle; Hamiltonian path; Block-cutvertex graph; Square of a graph; SHORT PROOF; BLOCK; THEME;
D O I
10.1016/j.disc.2023.113702
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
On the basis of recent results on hamiltonicity, [5], and hamiltonian connectedness, [9], in the square of a 2-block, we determine the most general block-cutvertex structure a graph G may have in order to guarantee that G2 is hamiltonian, hamiltonian connected, respectively. Such an approach was already developed in [10] for hamiltonian total graphs.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Notes on Hamiltonian Graphs and Hamiltonian-Connected Graphs
    Gao, Yunshu
    Li, Guojun
    Yan, Jin
    ARS COMBINATORIA, 2013, 109 : 405 - 414
  • [2] Hamiltonian and Hamiltonian connected graphs involving neighborhood intersections
    Xiao, Xinping
    Wuhan Jiaotong Keji Daxue Xuebao/Journal of Wuhan Transportation University, 2000, 24 (03): : 327 - 330
  • [3] A family of Hamiltonian and Hamiltonian connected graphs with fault tolerance
    Chen, Y-Chuang
    Huang, Yong-Zen
    Hsu, Lih-Hsing
    Tan, Jimmy J. M.
    JOURNAL OF SUPERCOMPUTING, 2010, 54 (02): : 229 - 238
  • [4] A family of Hamiltonian and Hamiltonian connected graphs with fault tolerance
    Y-Chuang Chen
    Yong-Zen Huang
    Lih-Hsing Hsu
    Jimmy J. M. Tan
    The Journal of Supercomputing, 2010, 54 : 229 - 238
  • [5] CUBIC GRAPHS WITH HAMILTONIAN SQUARE
    FLEISCHN.H
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 19 (01): : A31 - &
  • [6] A GENERALIZATION OF HAMILTONIAN CONNECTED GRAPHS
    LICK, DR
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 16 (01): : 193 - &
  • [7] Critical Hamiltonian Connected Graphs
    Modalleliyan, Maliheh
    Omoomi, Behnaz
    ARS COMBINATORIA, 2016, 126 : 13 - 27
  • [8] On square-Hamiltonian graphs
    Protasova, K. D.
    ALGEBRA & DISCRETE MATHEMATICS, 2005, (03): : 56 - 59
  • [9] Hamiltonian-connected graphs
    Zhao Kewen
    Lai, Hong-Jian
    Zhou, Ju
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 55 (12) : 2707 - 2714
  • [10] Hamiltonian connected line graphs
    Li, Deng-Xin
    Lai, Hong-Jian
    Shao, Ye-Hong
    Zhan, Mingquan
    COMPUTATIONAL SCIENCE - ICCS 2007, PT 3, PROCEEDINGS, 2007, 4489 : 377 - +