Semiconductor Heterostructure (SFT-SnO2) Electrolyte with Enhanced Ionic Conduction for Ceramic Fuel Cells

被引:6
|
作者
Lu, Yuzheng [1 ]
Shah, M. A. K. Yousaf [2 ]
Mushtaq, Naveed [2 ]
Yousaf, Muhammad [2 ]
Akbar, Nabeela [2 ]
Arshad, Naila [3 ]
Irshad, Muhammad Sultan [4 ]
Lund, Peter D. [5 ]
Zhu, Bin [2 ]
Asghar, Imran [5 ,6 ]
机构
[1] Nanjing Xiao Zhuang Univ, Sch Elect Engn, Nanjing 211171, Peoples R China
[2] Southeast Univ, Energy Storage Joint Res Ctr, Sch Energy & Environm, Jiangsu Prov Key Lab Solar Energy Sci & Technol, Nanjing 210096, Peoples R China
[3] Shenzhen Univ, Coll Mechatron & Control Engn, Guangdong Prov Key Lab Micro Nano Optomechatron En, Shenzhen 518060, Peoples R China
[4] Shenzhen Univ, Inst Microscale Optoelect, Int Collaborat Lab 2D Mat Optoelect Sci & Technol, Minist Educ, Shenzhen 518060, Peoples R China
[5] Aalto Univ, Sch Sci, Dept Appl Phys, New Energy Technol Grp, POB 15100, FI-00076 Aalto, Finland
[6] Hubei Univ, Fac Phys & Elect Sci, Wuhan 430062, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
semiconductor heterostructure SFT-SnO2; high ionic transportation; energy band alignment; peak power density; ceramic fuel cells (CFCs); YTTRIA-STABILIZED ZIRCONIA; THIN-FILM; ELECTROCHEMICAL PERFORMANCE; TEMPERATURE; PEROVSKITE; NI0.8CO0.15AL0.05LIO2; MICROSTRUCTURE; TECHNOLOGY; SOFC;
D O I
10.1021/acsaem.3c00442
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Electronicconduction inhibition, heterostructure construction,constituting built-in electric field (BIEF), and the generation ofan energetically more active region in the lattice and at the interfaceare ways to increase the ionic conductivity (sigma(i))of electrolyte materials for ceramic fuel cells (CFCs). The conductionof ions and stoppage of e(-) conductivity are of utmostimportance in semiconductor-based electrolytes. Type-II heterojunctioncan be synthesized to improve fuel cell performance by increasingionic conductivity. SFT (SrFe0.3Ti0.7O3)-SnO2 p-n heterojunction was produced bycombining p-type SFT and n-type SnO2 semiconductors. Theresulting SFT-SnO2 heterostructure unveiled a highionic conductivity of 0.18 S/cm and an open-circuit voltage (OCV)of 1.04 V, contributing to a remarkable power output of 805 mW/cm(2) at a low operating temperature of 520 degrees C. High ionicconductivity and efficient fuel cell performance are attributed toa synergistic interaction between the SFT/SnO2 heterojunctionand BIEF. Heterojunction production between SFT and SnO2 was confirmed by numerous characterization techniques (X-ray diffractometer(XRD), scanning electron microscopy (SEM), high-resolution transmissionelectron microscopy (HR-TEM), UV-visible, ultraviolet photoelectronspectroscopy (UPS), X-ray photoelectron spectroscopy (XPS)). The SFT/SnO2 junction valence band deviation and energy band structurewere also validated. Our research shows that the constructed heterostructureSFT-SnO2 is an effective and efficient electrolytematerial for future fuel cell technology.
引用
收藏
页码:6518 / 6531
页数:14
相关论文
共 50 条
  • [31] Enhanced proton conduction in zirconium phosphate/ionic liquids materials for high-temperature fuel cells
    Mohammed, Hanin
    Al-Othman, Amani
    Nancarrow, Paul
    Elsayed, Yehya
    Tawalbeh, Muhammad
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (06) : 4857 - 4869
  • [32] Enhanced high-temperature polymer electrolyte membrane for fuel cells based on polybenzimidazole and ionic liquids
    Wang, Jacob Tse-Wei
    Hsu, Steve Lien-Chung
    ELECTROCHIMICA ACTA, 2011, 56 (07) : 2842 - 2846
  • [33] Cross-linked poly(arylene ether ketone) electrolyte membranes with enhanced proton conduction for fuel cells
    Dang, Hai-Son
    Kim, Dukjoon
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (24) : 19007 - 19016
  • [34] Enhanced Proton Conduction with Low Oxygen Vacancy Concentration and Favorable Hydration for Protonic Ceramic Fuel Cells Cathode
    Wang, Xiaoyu
    Li, Wenhuai
    Zhou, Chuan
    Xu, Meigui
    Hu, Zhiwei
    Pao, Chih-Wen
    Zhou, Wei
    Shao, Zongping
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (01) : 1339 - 1347
  • [35] Al2O3-CeO2 composite electrolyte: Preparation and performance of semiconductor ionic fuel cell
    Liu Juan
    Lu Yu-Zheng
    Yang Jing-Jing
    Wang Ruo-Ming
    Zhu Bin
    Yun Si-Ning
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2023, 39 (09) : 1699 - 1710
  • [36] Multilayered YSZ/GZO films with greatly enhanced ionic conduction for low temperature solid oxide fuel cells
    Li, Bin
    Zhang, Jiaming
    Kaspar, Tiffany
    Shutthanandan, Vaithiyalingam
    Ewing, Rodney C.
    Lian, Jie
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2013, 15 (04) : 1296 - 1301
  • [37] Carbon-Free Pt Electrocatalysts Supported on SnO2 for Polymer Electrolyte Fuel Cells
    Masao, A.
    Noda, S.
    Takasaki, F.
    Ito, K.
    Sasaki, K.
    ELECTROCHEMICAL AND SOLID STATE LETTERS, 2009, 12 (09) : B119 - B122
  • [38] Semiconductor Heterostructure (SrFe0.3TiO3-ZnO) Electrolyte with High Proton Conductivity for Low-Temperature Ceramic Electrochemical Cells
    Shah, M. A. K. Yousaf
    Lu, Yuzheng
    Mushtaq, Naveed
    Yousaf, Muhammad
    Rauf, Sajid
    Akbar, Nabeela
    Arshad, Naila
    Irshad, Sultan
    Zhu, Bin
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (30) : 40086 - 40099
  • [39] Semiconductor ionic based Sm0.2Ce0.8O2_δ-La0.6Sr0.4Fe0.8Cu0.2O3-δ heterostructure for low temperature ceramic fuel cells
    Zhang, Yifei
    Yousaf, Muhammad
    Yang, Xinlei
    Liu, Jingjing
    Wang, Hao
    Yang, Fan
    CERAMICS INTERNATIONAL, 2022, 48 (02) : 2031 - 2037
  • [40] Enhanced Performance of Aprotic Electrolyte Li-O2 Batteries with SnS2-SnO2/C Heterostructure as Efficient Cathode Catalyst
    Li, Jingjuan
    Hou, Xiaoyan
    Mao, Ya
    Lai, Chunyan
    Yuan, Xianxia
    ENERGY & FUELS, 2020, 34 (11) : 14995 - 15003