Semiconductor Heterostructure (SFT-SnO2) Electrolyte with Enhanced Ionic Conduction for Ceramic Fuel Cells

被引:6
|
作者
Lu, Yuzheng [1 ]
Shah, M. A. K. Yousaf [2 ]
Mushtaq, Naveed [2 ]
Yousaf, Muhammad [2 ]
Akbar, Nabeela [2 ]
Arshad, Naila [3 ]
Irshad, Muhammad Sultan [4 ]
Lund, Peter D. [5 ]
Zhu, Bin [2 ]
Asghar, Imran [5 ,6 ]
机构
[1] Nanjing Xiao Zhuang Univ, Sch Elect Engn, Nanjing 211171, Peoples R China
[2] Southeast Univ, Energy Storage Joint Res Ctr, Sch Energy & Environm, Jiangsu Prov Key Lab Solar Energy Sci & Technol, Nanjing 210096, Peoples R China
[3] Shenzhen Univ, Coll Mechatron & Control Engn, Guangdong Prov Key Lab Micro Nano Optomechatron En, Shenzhen 518060, Peoples R China
[4] Shenzhen Univ, Inst Microscale Optoelect, Int Collaborat Lab 2D Mat Optoelect Sci & Technol, Minist Educ, Shenzhen 518060, Peoples R China
[5] Aalto Univ, Sch Sci, Dept Appl Phys, New Energy Technol Grp, POB 15100, FI-00076 Aalto, Finland
[6] Hubei Univ, Fac Phys & Elect Sci, Wuhan 430062, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
semiconductor heterostructure SFT-SnO2; high ionic transportation; energy band alignment; peak power density; ceramic fuel cells (CFCs); YTTRIA-STABILIZED ZIRCONIA; THIN-FILM; ELECTROCHEMICAL PERFORMANCE; TEMPERATURE; PEROVSKITE; NI0.8CO0.15AL0.05LIO2; MICROSTRUCTURE; TECHNOLOGY; SOFC;
D O I
10.1021/acsaem.3c00442
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Electronicconduction inhibition, heterostructure construction,constituting built-in electric field (BIEF), and the generation ofan energetically more active region in the lattice and at the interfaceare ways to increase the ionic conductivity (sigma(i))of electrolyte materials for ceramic fuel cells (CFCs). The conductionof ions and stoppage of e(-) conductivity are of utmostimportance in semiconductor-based electrolytes. Type-II heterojunctioncan be synthesized to improve fuel cell performance by increasingionic conductivity. SFT (SrFe0.3Ti0.7O3)-SnO2 p-n heterojunction was produced bycombining p-type SFT and n-type SnO2 semiconductors. Theresulting SFT-SnO2 heterostructure unveiled a highionic conductivity of 0.18 S/cm and an open-circuit voltage (OCV)of 1.04 V, contributing to a remarkable power output of 805 mW/cm(2) at a low operating temperature of 520 degrees C. High ionicconductivity and efficient fuel cell performance are attributed toa synergistic interaction between the SFT/SnO2 heterojunctionand BIEF. Heterojunction production between SFT and SnO2 was confirmed by numerous characterization techniques (X-ray diffractometer(XRD), scanning electron microscopy (SEM), high-resolution transmissionelectron microscopy (HR-TEM), UV-visible, ultraviolet photoelectronspectroscopy (UPS), X-ray photoelectron spectroscopy (XPS)). The SFT/SnO2 junction valence band deviation and energy band structurewere also validated. Our research shows that the constructed heterostructureSFT-SnO2 is an effective and efficient electrolytematerial for future fuel cell technology.
引用
收藏
页码:6518 / 6531
页数:14
相关论文
共 50 条
  • [21] Developing cuprospinel CuFe2O4-ZnO semiconductor heterostructure as a proton conducting electrolyte for advanced fuel cells
    Paydar, Sara
    Akbar, Nabeela
    Shi, Quan
    Wu, Yan
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (15) : 9927 - 9937
  • [22] Validating the application of semiconductor-ionic conductor in solid oxide fuel cells as electrolyte membrane
    Dong, Wenjing
    Xiao, Ziwei
    Hu, Mengling
    Ruan, Ruineng
    Li, Shuo
    Wang, Xunying
    Xia, Chen
    Wang, Baoyuan
    Wang, Hao
    JOURNAL OF POWER SOURCES, 2021, 499
  • [23] Semiconductor TiO2 thin film as an electrolyte for fuel cells
    Dong, Wenjing
    Tong, Yuzhu
    Zhu, Bin
    Xiao, Haibo
    Wei, Lili
    Huang, Chao
    Wang, Baoyuan
    Wang, Xunying
    Kim, Jung-Sik
    Wang, Hao
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (28) : 16728 - 16734
  • [24] Unveiling exceptional conduction mechanism and high proton conductivity in amorphous electrolyte for advanced ceramic fuel cells
    Ahmad, Touseef
    Mushtaq, Naveed
    Mansha, Hafsa
    Zaman, Kashf
    Khalid, Muhammad
    Masood, Muhammad Ahsan
    Sharif, Muhammad Shahid
    Lu, Yuzheng
    Zhu, Bin
    FUEL, 2025, 383
  • [25] Boosted proton conduction in LAO electrolyte through Li segregation for-Performance ceramic fuel cells
    Akbar, Nabeela
    Yousaf, Muhammad
    Shah, M. A. K. Yousaf
    Ahmed, Jahangeer
    Noor, Asma
    Islam, Quazi Arif
    Wu, Yan
    Alshehri, Saad M.
    Mushtaq, Naveed
    Zhu, Bin
    Paydar, Sara
    FUEL, 2025, 386
  • [26] Characterizing the Blocking Electron Ability of the Schottky Junction in SnO2-SDC Semiconductor-Ionic Membrane Fuel Cells
    Liu, Kai
    Ganesh, K. Sivajee
    Nie, Jingjing
    He, Zili
    Xia, Chen
    Dong, Wenjing
    Wang, Xunying
    Wang, Hao
    Wang, Baoyuan
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2020, 8 (28) : 10357 - 10368
  • [27] Significantly Enhanced Performance of Protonic Ceramic Fuel Cells by Laser Engineering the Electrolyte/Cathode Interface
    Zhou, Tianyi
    Huang, Hua
    Meng, Yuqing
    Conrad, Jacob
    Zou, Minda
    Zhao, Zeyu
    Brinkman, Kyle S.
    Tong, Jianhua
    ACS ENERGY LETTERS, 2024, 9 (09): : 4557 - 4563
  • [28] Built-in Electric Field for Efficient Charge Separation and Ionic Transport in LiCoO2/SnO2 Semiconductor Junction Fuel Cells
    Ganesh, K. Sivajee
    Fan, Liangdong
    Wang, Baoyuan
    Kumar, P. Jeevan
    Zhu, Bin
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (10) : 12513 - 12522
  • [29] Semiconductor ionic Cu doped CeO2 membrane fuel cells
    Sharif, Muhammad Shahid
    Rauf, Sajid
    Raza, Rizwan
    Huang, Jianbing
    Wan, Shuo
    Yang, Fan
    Gao, Jie
    Wang, Baoyuan
    Khan, Muhammad Zubair
    Li, Yike
    Jing, Yifu
    Zhu, Bin
    CERAMICS INTERNATIONAL, 2024, 50 (20) : 40350 - 40362
  • [30] Layered LiCoO2-LiFeO2 Heterostructure Composite for Semiconductor-Based Fuel Cells
    Liu, Yanyan
    Xia, Chen
    Wang, Baoyuan
    Tang, Yongfu
    NANOMATERIALS, 2021, 11 (05)