vox2vec: A Framework for Self-supervised Contrastive Learning of Voxel-Level Representations in Medical Images

被引:5
|
作者
Goncharov, Mikhail [1 ]
Soboleva, Vera [2 ]
Kurmukov, Anvar [3 ]
Pisov, Maxim [4 ]
Belyaev, Mikhail [1 ,3 ]
机构
[1] Skolkovo Inst Sci & Technol, Moscow, Russia
[2] Artificial Intelligence Res Inst AIRI, Moscow, Russia
[3] Inst Informat Transmiss Problems, Moscow, Russia
[4] IRA Labs, Moscow, Russia
基金
俄罗斯科学基金会;
关键词
Contrastive Self-Supervised Representation Learning; Medical Image Segmentation;
D O I
10.1007/978-3-031-43907-0_58
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper introduces vox2vec - a contrastive method for self-supervised learning (SSL) of voxel-level representations. vox2vec representations are modeled by a Feature Pyramid Network (FPN): a voxel representation is a concatenation of the corresponding feature vectors from different pyramid levels. The FPN is pre-trained to produce similar representations for the same voxel in different augmented contexts and distinctive representations for different voxels. This results in unified multi-scale representations that capture both global semantics (e.g., body part) and local semantics (e.g., different small organs or healthy versus tumor tissue). We use vox2vec to pre-train a FPN on more than 6500 publicly available computed tomography images. We evaluate the pre-trained representations by attaching simple heads on top of them and training the resulting models for 22 segmentation tasks. We show that vox2vec outperforms existing medical imaging SSL techniques in three evaluation setups: linear and non-linear probing and end-to-end fine-tuning. Moreover, a non-linear head trained on top of the frozen vox2vec representations achieves competitive performance with the FPN trained from scratch while having 50 times fewer trainable parameters. The code is available at https://github.com/mishgon/vox2vec.
引用
收藏
页码:605 / 614
页数:10
相关论文
共 50 条
  • [11] Self-supervised learning of Dynamic Representations for Static Images
    Song, Siyang
    Sanchez, Enrique
    Shen, Linlin
    Valstar, Michel
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 1619 - 1626
  • [12] FundusNet, A self-supervised contrastive learning framework for Fundus Feature Learning
    Mojab, Nooshin
    Alam, Minhaj
    Hallak, Joelle
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2022, 63 (07)
  • [13] A NOVEL CONTRASTIVE LEARNING FRAMEWORK FOR SELF-SUPERVISED ANOMALY DETECTION
    Li, Jingze
    Lian, Zhichao
    Li, Min
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 3366 - 3370
  • [14] Image classification framework based on contrastive self-supervised learning
    Zhao H.-W.
    Zhang J.-R.
    Zhu J.-P.
    Li H.
    Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2022, 52 (08): : 1850 - 1856
  • [15] Negative sampling strategies for contrastive self-supervised learning of graph representations
    Hafidi, Hakim
    Ghogho, Mounir
    Ciblat, Philippe
    Swami, Ananthram
    SIGNAL PROCESSING, 2022, 190
  • [16] Self-supervised Segment Contrastive Learning for Medical Document Representation
    Abro, Waheed Ahmed
    Kteich, Hanane
    Bouraoui, Zied
    ARTIFICIAL INTELLIGENCE IN MEDICINE, PT I, AIME 2024, 2024, 14844 : 312 - 321
  • [17] Self-Supervised Triplet Contrastive Learning for Classifying Endometrial Histopathological Images
    Zhao, Fengjun
    Wang, Zhiwei
    Du, Hongyan
    He, Xiaowei
    Cao, Xin
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2023, 27 (12) : 5970 - 5981
  • [18] Self-supervised Visual Feature Learning and Classification Framework: Based on Contrastive Learning
    Wang, Zhibo
    Yan, Shen
    Zhang, Xiaoyu
    Lobo, Niels Da Vitoria
    16TH IEEE INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS AND VISION (ICARCV 2020), 2020, : 719 - 725
  • [19] HCNA: Hyperbolic Contrastive Learning Framework for Self-Supervised Network Alignment
    Saxena, Shruti
    Chakraborty, Roshni
    Chandra, Joydeep
    INFORMATION PROCESSING & MANAGEMENT, 2022, 59 (05)
  • [20] A Simple and Effective Self-Supervised Contrastive Learning Framework for Aspect Detection
    Shi, Tian
    Li, Liuqing
    Wang, Ping
    Reddy, Chandan K.
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 13815 - 13824