A Simple and Effective Self-Supervised Contrastive Learning Framework for Aspect Detection

被引:0
|
作者
Shi, Tian [1 ]
Li, Liuqing [2 ]
Wang, Ping [1 ]
Reddy, Chandan K. [1 ]
机构
[1] Virginia Tech, Dept Comp Sci, Blacksburg, VA 24061 USA
[2] Verizon Media, New York, NY USA
基金
美国国家科学基金会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Unsupervised aspect detection (UAD) aims at automatically extracting interpretable aspects and identifying aspect-specific segments (such as sentences) from online reviews. However, recent deep learning based topic models, specifically aspect-based autoencoder, suffer from several problems such as extracting noisy aspects and poorly mapping aspects discovered by models to the aspects of interest. To tackle these challenges, in this paper, we first propose a self-supervised contrastive learning framework and an attention-based model equipped with a novel smooth self-attention (SSA) module for the UAD task in order to learn better representations for aspects and review segments. Secondly, we introduce a high-resolution selective mapping (HRSMap) method to efficiently assign aspects discovered by the model to the aspects of interest. We also propose using a knowledge distillation technique to further improve the aspect detection performance. Our methods outperform several recent unsupervised and weakly supervised approaches on publicly available benchmark user review datasets. Aspect interpretation results show that extracted aspects are meaningful, have a good coverage, and can be easily mapped to aspects of interest. Ablation studies and attention weight visualization also demonstrate effectiveness of SSA and the knowledge distillation method.
引用
收藏
页码:13815 / 13824
页数:10
相关论文
共 50 条
  • [1] A NOVEL CONTRASTIVE LEARNING FRAMEWORK FOR SELF-SUPERVISED ANOMALY DETECTION
    Li, Jingze
    Lian, Zhichao
    Li, Min
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 3366 - 3370
  • [2] A Simple and Effective Usage of Self-supervised Contrastive Learning for Text Clustering
    Shi, Haoxiang
    Wang, Cen
    Sakai, Tetsuya
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2021, : 315 - 320
  • [3] Contrastive self-supervised representation learning framework for metal surface defect detection
    Mahe Zabin
    Anika Nahian Binte Kabir
    Muhammad Khubayeeb Kabir
    Ho-Jin Choi
    Jia Uddin
    [J]. Journal of Big Data, 10
  • [4] Contrastive self-supervised representation learning framework for metal surface defect detection
    Zabin, Mahe
    Kabir, Anika Nahian Binte
    Kabir, Muhammad Khubayeeb
    Choi, Ho-Jin
    Uddin, Jia
    [J]. JOURNAL OF BIG DATA, 2023, 10 (01)
  • [5] Self-Supervised Contrastive Learning for Volcanic Unrest Detection
    Bountos, Nikolaos Ioannis
    Papoutsis, Ioannis
    Michail, Dimitrios
    Anantrasirichai, Nantheera
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [6] FundusNet, A self-supervised contrastive learning framework for Fundus Feature Learning
    Mojab, Nooshin
    Alam, Minhaj
    Hallak, Joelle
    [J]. INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2022, 63 (07)
  • [7] A Hyperspectral Image Change Detection Framework With Self-Supervised Contrastive Learning Pretrained Model
    Ou, Xianfeng
    Liu, Liangzhen
    Tan, Shulun
    Zhang, Guoyun
    Li, Wujing
    Tu, Bing
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 7724 - 7740
  • [8] Adversarial Self-Supervised Contrastive Learning
    Kim, Minseon
    Tack, Jihoon
    Hwang, Sung Ju
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS (NEURIPS 2020), 2020, 33
  • [9] A Survey on Contrastive Self-Supervised Learning
    Jaiswal, Ashish
    Babu, Ashwin Ramesh
    Zadeh, Mohammad Zaki
    Banerjee, Debapriya
    Makedon, Fillia
    [J]. TECHNOLOGIES, 2021, 9 (01)
  • [10] Self-Supervised Learning: Generative or Contrastive
    Liu, Xiao
    Zhang, Fanjin
    Hou, Zhenyu
    Mian, Li
    Wang, Zhaoyu
    Zhang, Jing
    Tang, Jie
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (01) : 857 - 876