Environmental changes drive soil microbial community assembly across arid alpine grasslands on the Qinghai-Tibetan Plateau, China

被引:7
|
作者
Li, Zuzheng [1 ]
Yang, Yanzheng [1 ,3 ]
Zheng, Hua [1 ]
Hu, Baoan [2 ]
Dai, Xuhuan [1 ]
Meng, Nan [1 ]
Zhu, Jinyi [1 ]
Yan, Danni [1 ]
机构
[1] Chinese Acad Sci, Res Ctr Ecoenvironm Sci, State Key Lab Urban & Reg Ecol, Beijing 100085, Peoples R China
[2] Beijing Forestry Univ, Sch Ecol & Nat Conservat, Beijing 100083, Peoples R China
[3] Chinese Acad Sci, Res Ctr Ecoenvironm Sci, Shuangqing Rd 18, Beijing 100083, Peoples R China
基金
中国博士后科学基金;
关键词
Environmental changes; Arid; Semiarid; Soil microbial community; Qinghai-Tibetan Plateau; FUNGAL COMMUNITIES; DIVERSITY; BIODIVERSITY; BACTERIAL; GRADIENT; SCALE; BETA;
D O I
10.1016/j.catena.2023.107175
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Soil microbes play a key role in regulating ecosystem functions in arid alpine grasslands, which are extremely sensitive to environmental changes. However, the exact mechanism by which multiple environmental factors interact to shape local soil microbial community assembly is unclear. Therefore, exploring how changing environmental factors affect microbial community assembly responds to will help us predict microbial-mediated ecosystem processes under climate change. Here, we conducted large-scale field sampling from 30 alpine grassland sites (e.g., alpine meadow (AM), alpine steppe (AS) and alpine desert steppe (ADS)) across arid eco-systems on the Qinghai-Tibetan Plateau (QTP), China. Soil bacterial and fungal community assembly and their relationships with spatial, climatic, and vegetation-soil factors were studied with the Molecular Ecological Network Analysis Pipeline (MENAP), analysis of variance (ANOVA), canonical correspondence analysis (CCA) and structural equation models (SEMs). The results showed that the soil microbial diversity and co-occurrence network complexity increased significantly from ADS to AS and AM, and bacteria were more susceptible to environmental factors than fungi. The relative abundances of the dominant bacterial phyla, including Acid-obacteria, Proteobacteria, Actinobacteria and Gemmatimonadetes, showed a statistically significant increase, while the relative abundance of the fungal phyla Basidiomycota and Glomeromycota showed significant dif-ferences across arid alpine grasslands. Variation partitioning analysis (VPA) revealed that vegetation-soil factors contributed the most to explaining the bacterial community composition, whereas spatial factors contributed the most to explaining the variation in the fungal community composition. The results obtained from the SEMs suggested that latitude and soil pH had the greatest impact on the diversity of bacteria and fungi, respectively. Taken together, the results of this study provide a comprehensive perspective on how the soil microbial com-munities respond to changes in environmental factors across arid alpine grasslands on the QTP, China.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Warming yields distinct accumulation patterns of microbial residues in dry and wet alpine grasslands on the Qinghai-Tibetan Plateau
    Ding, Xueli
    Chen, Shengyun
    Zhang, Bin
    He, Hongbo
    Filley, Timothy R.
    Horwath, William R.
    BIOLOGY AND FERTILITY OF SOILS, 2020, 56 (07) : 881 - 892
  • [32] Comprehensive analysis of grazing intensity impacts alpine grasslands across the Qinghai-Tibetan Plateau: A meta-analysis
    Zhang, Zhenchao
    Zhao, Yiran
    Lin, Hao
    Li, Yanpeng
    Fu, Jinmin
    Wang, Yingxin
    Sun, Juan
    Zhao, Yanhua
    FRONTIERS IN PLANT SCIENCE, 2023, 13
  • [33] A comparison of biodiversity-ecosystem function relationships in alpine grasslands across a degradation gradient on the Qinghai-Tibetan Plateau
    Wang, Xuexia
    Dong, Shikui
    Sherman, Ruth
    Liu, Quanru
    Liu, Shiliang
    Li, Yuanyuan
    Wu, Yu
    RANGELAND JOURNAL, 2015, 37 (01): : 45 - 55
  • [34] The Plant Interspecific Association in the Revegetated Alpine Grasslands Determines the Productivity Stability of Plant Community Across Restoration Time on Qinghai-Tibetan Plateau
    Wu, Shengnan
    Wen, Lu
    Dong, Shikui
    Gao, Xiaoxia
    Xu, Yudan
    Li, Shuai
    Dong, Quanming
    Wessell, Kelly
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [35] Effect of microtopography on soil respiration in an alpine meadow of the Qinghai-Tibetan plateau
    Guoyong Li
    Junpeng Mu
    Yinzhan Liu
    Nicholas G. Smith
    Shucun Sun
    Plant and Soil, 2017, 421 : 147 - 155
  • [36] Effect of microtopography on soil respiration in an alpine meadow of the Qinghai-Tibetan plateau
    Li, Guoyong
    Mu, Junpeng
    Liu, Yinzhan
    Smith, Nicholas G.
    Sun, Shucun
    PLANT AND SOIL, 2017, 421 (1-2) : 147 - 155
  • [37] Soil Bacterial Community Responses to N Application and Warming in a Qinghai-Tibetan Plateau Alpine Steppe
    Mu, Zhiyuan
    Dong, Shikui
    Li, Yaoming
    Li, Shuai
    Shen, Hao
    Zhang, Jing
    Han, Yuhui
    Xu, Yudan
    Zhao, Zhenzhen
    FRONTIERS IN ECOLOGY AND EVOLUTION, 2021, 9
  • [38] A remote sensing monitoring method for alpine grasslands desertification in the eastern Qinghai-Tibetan Plateau
    Qian Kuang
    Quan-zhi Yuan
    Ji-chong Han
    Rong Leng
    Yu-shuang Wang
    Ke-hong Zhu
    Shuo Lin
    Ping Ren
    Journal of Mountain Science, 2020, 17 : 1423 - 1437
  • [39] A remote sensing monitoring method for alpine grasslands desertification in the eastern Qinghai-Tibetan Plateau
    Qian, Kuang
    Yuan Quan-zhi
    Han Ji-chong
    Leng Rong
    Wang Yu-shuang
    Zhu Ke-hong
    Lin Shuo
    Ren Ping
    JOURNAL OF MOUNTAIN SCIENCE, 2020, 17 (06) : 1423 - 1437
  • [40] Estimating Plant Traits of Alpine Grasslands on the Qinghai-Tibetan Plateau Using Remote Sensing
    Li, Chengxiu
    Wulf, Hendrik
    Schmid, Bernhard
    He, Jin-Sheng
    Schaepman, Michael E.
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2018, 11 (07) : 2263 - 2275