Warming yields distinct accumulation patterns of microbial residues in dry and wet alpine grasslands on the Qinghai-Tibetan Plateau

被引:28
|
作者
Ding, Xueli [1 ]
Chen, Shengyun [2 ]
Zhang, Bin [1 ]
He, Hongbo [3 ]
Filley, Timothy R. [4 ]
Horwath, William R. [5 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Appl Meteorol, Nanjing 210044, Peoples R China
[2] Chinese Acad Sci, Northwest Inst Ecoenvironm & Resources, State Key Lab Cryospher Sci, Lanzhou 730000, Peoples R China
[3] Chinese Acad Sci, Inst Appl Ecol, Shenyang 110016, Peoples R China
[4] Purdue Univ, Dept Earth Atmospher & Planetary Sci, W Lafayette, IN 47907 USA
[5] Univ Calif Davis, Dept Land Air & Water Resources, Davis, CA 95616 USA
基金
中国国家自然科学基金;
关键词
Tibetan plateau; Global warming; Microbial-derived C; Soil C sequestration; Alpine grassland type; SOIL ORGANIC-CARBON; CLIMATE-CHANGE; TEMPERATURE SENSITIVITY; AMINO-SUGARS; MATTER; COMMUNITIES; INPUTS; PLANT; INCREASES; BIOMASS;
D O I
10.1007/s00374-020-01474-9
中图分类号
S15 [土壤学];
学科分类号
0903 ; 090301 ;
摘要
High altitude alpine grasslands in the Qinghai-Tibetan Plateau (QTP) contain high soil organic C (SOC) stocks that are extremely vulnerable to climate warming. Microbial residues are increasingly recognized as a major source of SOC, however, how climate warming affects this component of SOC in this region remains largely unknown. In this study, we examined the response of microbial residues to a 3-year experimental warming and the degree to which they contributed to SOC storage in two Tibetan ecosystems-alpine steppe (AS) and swamp meadow (SM). The number of microbial residues was indicated by amino sugar analysis. Our results revealed that warming yielded divergent microbial residue accumulation that significantly altered their contribution to SOC storage in the two alpine grasslands. Warming increased microbial residue abundance by approximately 17.6% across 0 to 20 cm depth in SM soils, while causing a significant decline (about 6.2%) in AS soils. The higher microbial residue accumulation in SM could lessen potential positive feedbacks from climate warming, while the decrease in microbial residues in AS may indicate greater loss of microbial-derived C inputs in warmed soils. Moreover, we found that warming selectively increased fungal residues as compared with bacterial despite inconsistent responses to warming in the two grasslands. These changes were accompanied by significant shifts in fungal to bacterial residue C ratios and their contribution to SOC pool, indicating an alteration of SOC composition and stability in alpine grassland ecosystems. These findings demonstrate that a microbial-derived C feedback to climate change is ecosystem-specific that alters the direction and magnitude of the microbial community.
引用
收藏
页码:881 / 892
页数:12
相关论文
共 50 条
  • [1] Warming yields distinct accumulation patterns of microbial residues in dry and wet alpine grasslands on the Qinghai-Tibetan Plateau
    Xueli Ding
    Shengyun Chen
    Bin Zhang
    Hongbo He
    Timothy R. Filley
    William R. Horwath
    Biology and Fertility of Soils, 2020, 56 : 881 - 892
  • [2] Assessment of the vulnerability of alpine grasslands on the Qinghai-Tibetan Plateau
    Li, Meng
    Zhang, Xianzhou
    He, Yongtao
    Niu, Ben
    Wu, Jianshuang
    PEERJ, 2020, 8
  • [3] Attribution analyses of changes in alpine grasslands on the Qinghai-Tibetan Plateau
    Chen, Huai
    Ju, Peijun
    Zhang, Jiang
    Wang, Yuanyun
    Zhu, Qiu'an
    Yan, Liang
    Kang, Xiaoming
    He, Yixin
    Zeng, Yuan
    Hao, Yanbin
    Wang, Yanfen
    CHINESE SCIENCE BULLETIN-CHINESE, 2020, 65 (22): : 2406 - 2418
  • [4] The effects of fencing on carbon stocks in the degraded alpine grasslands of the Qinghai-Tibetan Plateau
    Li, Yuanyuan
    Dong, Shikui
    Wen, Lu
    Wang, Xuexia
    Wu, Yu
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2013, 128 : 393 - 399
  • [5] Suitable exclosure duration for the restoration of degraded alpine grasslands on the Qinghai-Tibetan Plateau
    Cao, Jianjun
    Li, Guangdong
    Adamowski, Jan F.
    Holden, Nicholas M.
    Deo, Ravinesh C.
    Hu, Zeyong
    Zhu, Guofeng
    Xu, Xueyun
    Feng, Qi
    LAND USE POLICY, 2019, 86 : 261 - 267
  • [6] Differential response of alpine steppe and alpine meadow to climate warming in the central Qinghai-Tibetan Plateau
    Ganjurjav, Hasbagan
    Gao, Qingzhu
    Gornish, Elise S.
    Schwartz, Mark W.
    Liang, Yan
    Cao, Xujuan
    Zhang, Weina
    Zhang, Yong
    Li, Wenhan
    Wan, Yunfan
    Li, Yue
    Danjiu, Luobu
    Guo, Hongbao
    Lin, Erda
    AGRICULTURAL AND FOREST METEOROLOGY, 2016, 223 : 233 - 240
  • [7] Soil seed banks in degraded and revegetated grasslands in the alpine region of the Qinghai-Tibetan Plateau
    Li, Yuan-yuan
    Dong, Shi-kui
    Wen, Lu
    Wang, Xue-xia
    Wu, Yu
    ECOLOGICAL ENGINEERING, 2012, 49 : 77 - 83
  • [8] A remote sensing monitoring method for alpine grasslands desertification in the eastern Qinghai-Tibetan Plateau
    Qian Kuang
    Quan-zhi Yuan
    Ji-chong Han
    Rong Leng
    Yu-shuang Wang
    Ke-hong Zhu
    Shuo Lin
    Ping Ren
    Journal of Mountain Science, 2020, 17 : 1423 - 1437
  • [9] A remote sensing monitoring method for alpine grasslands desertification in the eastern Qinghai-Tibetan Plateau
    Qian, Kuang
    Yuan Quan-zhi
    Han Ji-chong
    Leng Rong
    Wang Yu-shuang
    Zhu Ke-hong
    Lin Shuo
    Ren Ping
    JOURNAL OF MOUNTAIN SCIENCE, 2020, 17 (06) : 1423 - 1437
  • [10] Estimating Plant Traits of Alpine Grasslands on the Qinghai-Tibetan Plateau Using Remote Sensing
    Li, Chengxiu
    Wulf, Hendrik
    Schmid, Bernhard
    He, Jin-Sheng
    Schaepman, Michael E.
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2018, 11 (07) : 2263 - 2275