Warming yields distinct accumulation patterns of microbial residues in dry and wet alpine grasslands on the Qinghai-Tibetan Plateau

被引:28
|
作者
Ding, Xueli [1 ]
Chen, Shengyun [2 ]
Zhang, Bin [1 ]
He, Hongbo [3 ]
Filley, Timothy R. [4 ]
Horwath, William R. [5 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Appl Meteorol, Nanjing 210044, Peoples R China
[2] Chinese Acad Sci, Northwest Inst Ecoenvironm & Resources, State Key Lab Cryospher Sci, Lanzhou 730000, Peoples R China
[3] Chinese Acad Sci, Inst Appl Ecol, Shenyang 110016, Peoples R China
[4] Purdue Univ, Dept Earth Atmospher & Planetary Sci, W Lafayette, IN 47907 USA
[5] Univ Calif Davis, Dept Land Air & Water Resources, Davis, CA 95616 USA
基金
中国国家自然科学基金;
关键词
Tibetan plateau; Global warming; Microbial-derived C; Soil C sequestration; Alpine grassland type; SOIL ORGANIC-CARBON; CLIMATE-CHANGE; TEMPERATURE SENSITIVITY; AMINO-SUGARS; MATTER; COMMUNITIES; INPUTS; PLANT; INCREASES; BIOMASS;
D O I
10.1007/s00374-020-01474-9
中图分类号
S15 [土壤学];
学科分类号
0903 ; 090301 ;
摘要
High altitude alpine grasslands in the Qinghai-Tibetan Plateau (QTP) contain high soil organic C (SOC) stocks that are extremely vulnerable to climate warming. Microbial residues are increasingly recognized as a major source of SOC, however, how climate warming affects this component of SOC in this region remains largely unknown. In this study, we examined the response of microbial residues to a 3-year experimental warming and the degree to which they contributed to SOC storage in two Tibetan ecosystems-alpine steppe (AS) and swamp meadow (SM). The number of microbial residues was indicated by amino sugar analysis. Our results revealed that warming yielded divergent microbial residue accumulation that significantly altered their contribution to SOC storage in the two alpine grasslands. Warming increased microbial residue abundance by approximately 17.6% across 0 to 20 cm depth in SM soils, while causing a significant decline (about 6.2%) in AS soils. The higher microbial residue accumulation in SM could lessen potential positive feedbacks from climate warming, while the decrease in microbial residues in AS may indicate greater loss of microbial-derived C inputs in warmed soils. Moreover, we found that warming selectively increased fungal residues as compared with bacterial despite inconsistent responses to warming in the two grasslands. These changes were accompanied by significant shifts in fungal to bacterial residue C ratios and their contribution to SOC pool, indicating an alteration of SOC composition and stability in alpine grassland ecosystems. These findings demonstrate that a microbial-derived C feedback to climate change is ecosystem-specific that alters the direction and magnitude of the microbial community.
引用
收藏
页码:881 / 892
页数:12
相关论文
共 50 条
  • [11] Effects of grazing on ecosystem structure and function of alpine grasslands in Qinghai-Tibetan Plateau: a synthesis
    Lu, Xuyang
    Kelsey, Kathy C.
    Yan, Yan
    Sun, Jian
    Wang, Xiaodan
    Cheng, Genwei
    Neff, Jason C.
    ECOSPHERE, 2017, 8 (01):
  • [12] Distinct Elevational Patterns and Their Linkages of Soil Bacteria and Plant Community in An Alpine Meadow of the Qinghai-Tibetan Plateau
    Cong, Jing
    Cong, Wei
    Lu, Hui
    Zhang, Yuguang
    MICROORGANISMS, 2022, 10 (05)
  • [13] Effects of microtopography on soil microbial communities in alpine meadows on the Qinghai-Tibetan Plateau
    Li, Xinwei
    Li, Xilai
    Shi, Yan
    Zhao, Shoujing
    Liu, Jiale
    Lin, Yinyi
    Li, Chunli
    Zhang, Chunhui
    CATENA, 2024, 239
  • [14] Climate change and human activities altered the diversity and composition of soil microbial community in alpine grasslands of the Qinghai-Tibetan Plateau
    Zhang, Yong
    Dong, Shikui
    Gao, Qingzhu
    Liu, Shiliang
    Zhou, Huakun
    Ganjurjav, Hasbagan
    Wang, Xuexia
    SCIENCE OF THE TOTAL ENVIRONMENT, 2016, 562 : 353 - 363
  • [15] Environmental changes drive soil microbial community assembly across arid alpine grasslands on the Qinghai-Tibetan Plateau, China
    Li, Zuzheng
    Yang, Yanzheng
    Zheng, Hua
    Hu, Baoan
    Dai, Xuhuan
    Meng, Nan
    Zhu, Jinyi
    Yan, Danni
    CATENA, 2023, 228
  • [16] Effects of grazing and climate warming on plant diversity, productivity and living state in the alpine rangelands and cultivated grasslands of the Qinghai-Tibetan Plateau
    Zhang, Yong
    Gao, Qingzhu
    Dong, Shikui
    Liu, Shiliang
    Wang, Xuexia
    Su, Xukun
    Li, Yuanyuan
    Tang, Lin
    Wu, Xiaoyu
    Zhao, Haidi
    RANGELAND JOURNAL, 2015, 37 (01): : 57 - 65
  • [17] Soil Nutrient and Vegetation Diversity Patterns of Alpine Wetlands on the Qinghai-Tibetan Plateau
    Ma, Muyuan
    Zhu, Yaojun
    Wei, Yuanyun
    Zhao, Nana
    SUSTAINABILITY, 2021, 13 (11)
  • [18] Pikas burrowing activity promotes vegetation species diversity in alpine grasslands on the Qinghai-Tibetan Plateau
    Qin, Yu
    Huang, Bo
    Zhang, Wei
    Yu, Yanhong
    Yi, Shuhua
    Sun, Yi
    GLOBAL ECOLOGY AND CONSERVATION, 2021, 31
  • [19] Temperature leads to annual changes of plant community composition in alpine grasslands on the Qinghai-Tibetan Plateau
    Hasbagan Ganjurjav
    Elise S. Gornish
    Guozheng Hu
    Yunfan Wan
    Yue Li
    Luobu Danjiu
    Qingzhu Gao
    Environmental Monitoring and Assessment, 2018, 190
  • [20] Temperature leads to annual changes of plant community composition in alpine grasslands on the Qinghai-Tibetan Plateau
    Ganjurjav, Hasbagan
    Gornish, Elise S.
    Hu, Guozheng
    Wan, Yunfan
    Li, Yue
    Danjiu, Luobu
    Gao, Qingzhu
    ENVIRONMENTAL MONITORING AND ASSESSMENT, 2018, 190 (10)