Dynamic response analyses of long-span cable-stayed bridges subjected to pulse-type ground motions

被引:18
|
作者
Jia, Hongyu [1 ]
Liu, Zhi [2 ]
Xu, Li [2 ]
Bai, Hao [3 ]
Bi, Kaiming [4 ]
Zhang, Chao [2 ]
Zheng, Shixiong [1 ]
机构
[1] Southwest Jiaotong Univ, Sch Civil Engn, Chengdu 610031, Peoples R China
[2] Fuzhou Univ, Coll Civil Engn, Fuzhou 350116, Peoples R China
[3] Sichuan Expressway Construct & Dev Grp Co Ltd, Chengdu 610041, Peoples R China
[4] Curtin Univ, Ctr Infrastruct Monitoring & Protect, Sch Civil Engn & Mech, Kent St, Bentley, WA 6102, Australia
基金
美国国家科学基金会;
关键词
Long-span cable-stayed bridge; Pulse-type ground motion; Shaking table test; Seismic response; Structure analysis; 1988 SAGUENAY EARTHQUAKE; NEAR-FAULT; DAMAGE; DIRECTIVITY; BUILDINGS; BEHAVIOR; SPECTRA; MODEL;
D O I
10.1016/j.soildyn.2022.107591
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
This paper presents the dynamic response analyses of a special long-span cable-stayed bridge with the main span length of 680 (m) subjected to pulse-type ground motions. The 1/100 scaled shaking table test are developed herein to verify the accuracy and correctness of the 3D finite element (FE) model of the examined long-span cable-stayed bridge on the software platform of SAP2000. To systematically investigate the influence on the seismic responses and on the selection of the nonlinear viscous damper parameters of the employed long-span cable-stayed bridge both the near-fault pulse-type ground motions and the far-field ground motions are selected as the seismic inputs of FE model. Some important conclusions are drawn that the near-fault ground motions usually causes the larger peak responses (e.g., Tower top displacement, girder end displacement, and moment of tower bottom) of the long-span cable-stayed bridge compared with the far-field motions, namely the near-fault ground motions are more destructive to the structures. The displacement responses can be amplified approximately 2-3 times and the damper parameters (Damping coefficient C and damping index alpha) of nonlinear viscous dampers can be affected by the ground motion characteristics. The damper parameter values are changed from the C = 3000 and alpha = 0.3 in far-field earthquakes to the C = 6000 and alpha = 0.2 in near-fault earthquakes, namely the near-fault ground motions obviously increase the demand of energy consumption of general nonlinear viscous dampers.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Health-monitoring methods for long-span cable-stayed bridges
    Bakhshizadeh A.
    Sadeghi K.
    Infrastructure Asset Management, 2023, 11 (01) : 41 - 54
  • [32] Seismic fragility assessment of long-span cable-stayed bridges in China
    Zhong, Jian
    Pang, Yutao
    Jeon, Jong-Su
    DesRoches, Reginald
    Yuan, Wancheng
    ADVANCES IN STRUCTURAL ENGINEERING, 2016, 19 (11) : 1797 - 1812
  • [33] Aerodynamics of two edge girders for long-span cable-stayed bridges
    Matsumoto, M
    Araki, K
    Daito, Y
    FLOW-INDUCED VIBRATION, 2000, : 149 - 156
  • [34] The Seismic Response Analysis of Long-Span Cable-Stayed Bridge
    Niu, Yongzhe
    Guo, Wenjie
    Li, Guangling
    Sun, Ruixin
    ADVANCES IN CIVIL AND STRUCTURAL ENGINEERING III, PTS 1-4, 2014, 501-504 : 1364 - +
  • [35] Node-based wave analysis method for the dynamic response and stiffness of long-span cable-stayed bridges
    Ji, Jianyi
    Huang, Shiping
    Akbar, Yasir
    Huang, Kunhong
    Wang, Ronghui
    STRUCTURES, 2024, 59
  • [36] Simplified calculation of longitudinal seismic response of cable-stayed bridges subjected to pulsed ground motions
    Xu, Yan
    Huang, Yong-Fu
    Li, Jian-Zhong
    Huanan Ligong Daxue Xuebao/Journal of South China University of Technology (Natural Science), 2015, 43 (02): : 41 - 47
  • [37] Static and Dynamic Mechanical Properties of Long-Span Cable-Stayed Bridges Using CFRP Cables
    Mei Kuihua
    Sun Shengjiang
    Jin Guoqing
    Sun Yamin
    ADVANCES IN CIVIL ENGINEERING, 2017, 2017
  • [38] Unified framework for stochastic dynamic responses and system reliability analysis of long-span cable-stayed bridges under near-fault ground motions
    Yang, Dixiong
    Liu, Jinlei
    Yu, Ruifang
    Chen, Guohai
    Engineering Structures, 2025, 322
  • [39] Study of the aerostatic and aerodynamic stability of super long-span cable-stayed bridges
    Zhang Xinjun
    Sun Hailing
    Engineering Sciences, 2014, 12 (02) : 82 - 92
  • [40] THE INFLUENCE OF BROKEN CABLES ON THE STRUCTURAL BEHAVIOR OF LONG-SPAN CABLE-STAYED BRIDGES
    Kao, Chin-Sheng
    Kou, Chang-Huan
    JOURNAL OF MARINE SCIENCE AND TECHNOLOGY-TAIWAN, 2010, 18 (03): : 395 - 404