Integrating physics-informed machine learning with resonance effect for structural dynamic performance modeling

被引:3
|
作者
Zhang, Jiaxin [1 ]
Lei, Xiaoming [1 ]
Chan, Pak-wai [2 ]
Dong, You [1 ]
机构
[1] Hong Kong Polytech Univ, Dept Civil & Environm Engn, Hong Kong 999077, Peoples R China
[2] Hong Kong Observ, Hong Kong 999077, Peoples R China
来源
关键词
Structural health monitoring; Physics -informed machine learning (PIML); Resonance effect; Response prediction; Climate change; Fragility analysis; SEISMIC RESPONSE; WIND-SPEED; PREDICTION;
D O I
10.1016/j.jobe.2024.108627
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Accurate prediction the dynamic response of structures under various loads is a complex and challenging task due to the uncertainties and intricacies of loading scenarios and analysis methods. Traditional approaches to structural analysis and modeling often rely on physics-based simulations, which can be computationally expensive and time-consuming. Over the years, Machine Learning (ML) methods have proven to be a formidable tool for data-driven modeling, based on in-situ monitoring data. However, these ML models are generally purely data-driven, lacking consideration for relevant physical information such as dynamic characteristics. Hence, this paper proposes a Physics-Informed Machine Learning (PIML) approach for modeling structural dynamic performance. This method embeds resonance effect, a crucial piece of physical information in real-world engineering, into the design of the multilayer perceptron (MLP) loss function. The model is validated through numerical simulations of forced vibrations in a singledegree-of-freedom system and a vehicle-bridge coupled system. The results indicate that the proposed PIML can model the system dynamic response effectively and simulate resonance effect at key frequency-domain locations accurately. Subsequently, features are extracted from the realworld monitoring data of a high-rise building dynamic response during Typhoon Hato, and PIML is applied for training. The results reveal that PIML significantly outperforms pure ML algorithms, even with a small dataset, and can effectively capture resonance effect in wind-induced vibrations. Using a well-trained PIML, a parameter analysis is conducted, comparing the dynamic performance under different wind speeds and frequency conditions. Lastly, considering the variation in wind parameters due to climate change, PIML is employed to analyze long-term structural fragility. The findings indicate significant changes in fragility from 1985 to 2045. In conclusion, the proposed PIML algorithm offers several advantages over conventional methods, such as reduced computational costs, improved accuracy, and the ability to capture complex nonlinear behaviors and resonance effect of interest, and efficiently serve in analyses of structural reliability and fragility.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] A Review of Physics-Informed Machine Learning in Fluid Mechanics
    Sharma, Pushan
    Chung, Wai Tong
    Akoush, Bassem
    Ihme, Matthias
    ENERGIES, 2023, 16 (05)
  • [32] Physics-informed machine learning for inorganic scintillator discovery
    Pilania, G.
    McClellan, K. J.
    Stanek, C. R.
    Uberuaga, B. P.
    JOURNAL OF CHEMICAL PHYSICS, 2018, 148 (24):
  • [33] Neural Oscillators for Generalization of Physics-Informed Machine Learning
    Kapoor, Taniya
    Chandra, Abhishek
    Tartakovsky, Daniel M.
    Wang, Hongrui
    Nunez, Alfredo
    Dollevoet, Rolf
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 12, 2024, : 13059 - 13067
  • [34] Physics-informed machine learning for programmable photonic circuits
    Teofilovic, Isidora
    Zibar, Darko
    Da Ros, Francesco
    MACHINE LEARNING IN PHOTONICS, 2024, 13017
  • [35] Physics-informed machine learning for moving load problems
    Kapoor, Taniya
    Wang, Hongrui
    Nunez, Alfredo
    Dollevoet, Rolf
    XII INTERNATIONAL CONFERENCE ON STRUCTURAL DYNAMICS, EURODYN 2023, 2024, 2647
  • [36] Physics-Informed Extreme Learning Machine Lyapunov Functions
    Zhou, Ruikun
    Fitzsimmons, Maxwell
    Meng, Yiming
    Liu, Jun
    IEEE CONTROL SYSTEMS LETTERS, 2024, 8 : 1763 - 1768
  • [37] Predicting glass structure by physics-informed machine learning
    Bodker, Mikkel L.
    Bauchy, Mathieu
    Du, Tao
    Mauro, John C.
    Smedskjaer, Morten M.
    NPJ COMPUTATIONAL MATERIALS, 2022, 8 (01)
  • [38] Parsimony as the ultimate regularizer for physics-informed machine learning
    J. Nathan Kutz
    Steven L. Brunton
    Nonlinear Dynamics, 2022, 107 : 1801 - 1817
  • [39] Parsimony as the ultimate regularizer for physics-informed machine learning
    Kutz, J. Nathan
    Brunton, Steven L.
    NONLINEAR DYNAMICS, 2022, 107 (03) : 1801 - 1817
  • [40] Physics-Informed Machine Learning for Optical Modes in Composites
    Ghosh, Abantika
    Elhamod, Mohannad
    Bu, Jie
    Lee, Wei-Cheng
    Karpatne, Anuj
    Podolskiy, Viktor A.
    ADVANCED PHOTONICS RESEARCH, 2022, 3 (11):