Asymptotic properties for solutions of differential equations with singular p(t)-Laplacian

被引:2
|
作者
Dosla, Zuzana [1 ]
Fujimoto, Kodai [2 ]
机构
[1] Masaryk Univ, Dept Math & Stat, Kotlarska 2, Brno 61137, Czech Republic
[2] Osaka Metropolitan Univ, Fac Liberal Arts Sci & Global Educ, Gakuen Cho 1-1,Naka Ku, Sakai, Osaka 5998531, Japan
来源
MONATSHEFTE FUR MATHEMATIK | 2023年 / 201卷 / 01期
关键词
Asymptotic behavior; Nonoscillatory solutions; Extremal solutions; Weakly increasing solutions; p(t)-Laplacian; Half-linear differential equations;
D O I
10.1007/s00605-023-01835-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper deals with the nonoscillatory solutions of the nonlinear differential equation (a(t)|x'|(p(t)-2)x')' +b(t)|x|(?-2)x = 0 involving "singular" p(t)-Laplacian. Sufficient conditions are given for the existence of extremal solutions, which do not exist in the conventional cases. In addition, we prove the coexistence of extremal solutions and weakly increasing solutions. Some examples are given to illustrate our results.
引用
收藏
页码:65 / 78
页数:14
相关论文
共 50 条
  • [21] Uniqueness of solutions to singular p-Laplacian equations with subcritical nonlinearity
    Maultsby, Bevin
    ADVANCES IN NONLINEAR ANALYSIS, 2017, 6 (01) : 37 - 59
  • [22] Existence and multiplicity of positive solutions for singular p-Laplacian equations
    Lu, Haishen
    Xie, Yi
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2007, 26 (01): : 25 - 41
  • [23] Large solutions for equations involving the p-Laplacian and singular weights
    Garcia-Melian, Jorge
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2009, 60 (04): : 594 - 607
  • [24] Existence of solutions for p(x)-Laplacian equations with singular coefficients in RN
    Zhang, Qihu
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 348 (01) : 38 - 50
  • [25] Existence of positive solutions of singular p-Laplacian equations in a ball
    Li, Fang
    Yang, Zuodong
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2012, 5 (01): : 44 - 55
  • [26] POSITIVE SOLUTIONS FOR SINGULAR (p, q)-LAPLACIAN EQUATIONS WITH NEGATIVE PERTURBATION
    Papageorgiou, Nikolaos S.
    Vetro, Clogero
    Vetro, Francesca
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 2023 (25)
  • [27] Bounded positive entire solutions of singular p-Laplacian equations
    Mia, Qing
    Yang, Zuodong
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 69 (11) : 3749 - 3760
  • [28] PAIRS OF POSITIVE SOLUTIONS FOR RESONANT SINGULAR EQUATIONS WITH THE p-LAPLACIAN
    Papageorgiou, Nikolaos S.
    Radulescu, Vicentiu D.
    Repovs, Dusan D.
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2017,
  • [29] Oscillatory property of solutions for p(t)-Laplacian equations
    Zhang, Qihu
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2007, 2007 (1)
  • [30] ON A NEW APPROACH FOR STUDYING ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO SINGULAR DIFFERENTIAL EQUATIONS
    Valeev, Nurmukhamet Fuatovich
    Nazirova, Elvira Airatovna
    Sultanaev, Yaudat Talgatovich
    UFA MATHEMATICAL JOURNAL, 2015, 7 (03): : 9 - 14