Asymptotic properties for solutions of differential equations with singular p(t)-Laplacian

被引:2
|
作者
Dosla, Zuzana [1 ]
Fujimoto, Kodai [2 ]
机构
[1] Masaryk Univ, Dept Math & Stat, Kotlarska 2, Brno 61137, Czech Republic
[2] Osaka Metropolitan Univ, Fac Liberal Arts Sci & Global Educ, Gakuen Cho 1-1,Naka Ku, Sakai, Osaka 5998531, Japan
来源
MONATSHEFTE FUR MATHEMATIK | 2023年 / 201卷 / 01期
关键词
Asymptotic behavior; Nonoscillatory solutions; Extremal solutions; Weakly increasing solutions; p(t)-Laplacian; Half-linear differential equations;
D O I
10.1007/s00605-023-01835-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper deals with the nonoscillatory solutions of the nonlinear differential equation (a(t)|x'|(p(t)-2)x')' +b(t)|x|(?-2)x = 0 involving "singular" p(t)-Laplacian. Sufficient conditions are given for the existence of extremal solutions, which do not exist in the conventional cases. In addition, we prove the coexistence of extremal solutions and weakly increasing solutions. Some examples are given to illustrate our results.
引用
收藏
页码:65 / 78
页数:14
相关论文
共 50 条