Topic modeling for multi-omic integration in the human gut microbiome and implications for Autism

被引:1
|
作者
Tataru, Christine [1 ]
Peras, Marie [3 ]
Rutherford, Erica [3 ]
Dunlap, Kaiti [4 ]
Yin, Xiaochen [3 ]
Chrisman, Brianna S. [4 ]
DeSantis, Todd Z. [3 ]
Wall, Dennis P. [5 ,6 ]
Iwai, Shoko [3 ]
David, Maude M. [1 ,2 ]
机构
[1] Oregon State Univ, Dept Microbiol, SW Campus Way, Corvallis, OR 97331 USA
[2] Oregon State Univ, Sch Pharm, SW Campus Way, Corvallis, OR 97331 USA
[3] Second Genome Inc, 1000 Marina Blvd,Suite 500, Brisbane, CA 94005 USA
[4] Serra Mall, Dept Bioengn, Stanford, CA USA
[5] Serra Mall, Dept Biomed Data Sci, Stanford, CA USA
[6] Dept Pediat Syst Med, 1265 Welch Rd, Stanford, CA USA
关键词
DIAGNOSTIC OBSERVATION SCHEDULE; GAMMA-AMINOBUTYRIC-ACID; ESCHERICHIA-COLI; STEROID SULFATASE; SPECTRUM; CAFFEINE; METABOLITE; PROTEINS; HETEROGENEITY; ASSOCIATION;
D O I
10.1038/s41598-023-38228-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
While healthy gut microbiomes are critical to human health, pertinent microbial processes remain largely undefined, partially due to differential bias among profiling techniques. By simultaneously integrating multiple profiling methods, multi-omic analysis can define generalizable microbial processes, and is especially useful in understanding complex conditions such as Autism. Challenges with integrating heterogeneous data produced by multiple profiling methods can be overcome using Latent Dirichlet Allocation (LDA), a promising natural language processing technique that identifies topics in heterogeneous documents. In this study, we apply LDA to multi-omic microbial data (16S rRNA amplicon, shotgun metagenomic, shotgun metatranscriptomic, and untargeted metabolomic profiling) from the stool of 81 children with and without Autism. We identify topics, or microbial processes, that summarize complex phenomena occurring within gut microbial communities. We then subset stool samples by topic distribution, and identify metabolites, specifically neurotransmitter precursors and fatty acid derivatives, that differ significantly between children with and without Autism. We identify clusters of topics, deemed "cross-omic topics", which we hypothesize are representative of generalizable microbial processes observable regardless of profiling method. Interpreting topics, we find each represents a particular diet, and we heuristically label each cross-omic topic as: healthy/general function, age-associated function, transcriptional regulation, and opportunistic pathogenesis.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Topic modeling for multi-omic integration in the human gut microbiome and implications for Autism
    Christine Tataru
    Marie Peras
    Erica Rutherford
    Kaiti Dunlap
    Xiaochen Yin
    Brianna S. Chrisman
    Todd Z. DeSantis
    Dennis P. Wall
    Shoko Iwai
    Maude M. David
    Scientific Reports, 13
  • [2] Multi-omic links between gut microbiome and cardiovascular disease
    Hindson, Jordan
    NATURE REVIEWS GASTROENTEROLOGY & HEPATOLOGY, 2024, 21 (06) : 376 - 376
  • [3] A multi-omic trip through the human gut
    Quinn, Robert A. A.
    Martin, Christian
    Guzior, Douglas V. V.
    NATURE METABOLISM, 2023, 5 (05) : 720 - 721
  • [4] A multi-omic trip through the human gut
    Robert A. Quinn
    Christian Martin
    Douglas V. Guzior
    Nature Metabolism, 2023, 5 : 720 - 721
  • [5] Multi-omic approaches for host-microbiome data integration
    Chetty, Ashwin
    Blekhman, Ran
    GUT MICROBES, 2024, 16 (01)
  • [6] Interplay between Cruciferous Vegetables and the Gut Microbiome: A Multi-Omic Approach
    Bouranis, John A.
    Beaver, Laura M.
    Jiang, Duo
    Choi, Jaewoo
    Wong, Carmen P.
    Davis, Edward W.
    Williams, David E.
    Sharpton, Thomas J.
    Stevens, Jan F.
    Ho, Emily
    NUTRIENTS, 2023, 15 (01)
  • [7] A multi-omic future for microbiome studies
    Janet K. Jansson
    Erin S. Baker
    Nature Microbiology, 1 (5)
  • [8] A multi-omic future for microbiome studies
    Jansson, Janet K.
    Baker, Erin S.
    NATURE MICROBIOLOGY, 2016, 1 (05)
  • [9] HMPDACC: a Human Microbiome Project Multi-omic data resource
    Creasy, Heather Huot
    Felix, Victor
    Aluvathingal, Jain
    Crabtree, Jonathan
    Ifeonu, Olukemi
    Matsumura, James
    McCracken, Carrie
    Nickel, Lance
    Orvis, Joshua
    Schor, Mike
    Giglio, Michelle
    Mahurkar, Anup
    White, Owen
    NUCLEIC ACIDS RESEARCH, 2021, 49 (D1) : D734 - D742
  • [10] Multi-omic integration of microbiome data for identifying disease-associated modules
    Efrat Muller
    Itamar Shiryan
    Elhanan Borenstein
    Nature Communications, 15