HMPDACC: a Human Microbiome Project Multi-omic data resource

被引:15
|
作者
Creasy, Heather Huot [1 ]
Felix, Victor [1 ]
Aluvathingal, Jain [1 ]
Crabtree, Jonathan [1 ]
Ifeonu, Olukemi [1 ]
Matsumura, James [1 ,2 ]
McCracken, Carrie [1 ]
Nickel, Lance [1 ]
Orvis, Joshua [1 ]
Schor, Mike [1 ]
Giglio, Michelle [1 ]
Mahurkar, Anup [1 ]
White, Owen [1 ]
机构
[1] Univ Maryland, Inst Genome Sci, Sch Med, Baltimore, MD 21201 USA
[2] Dina, Chicago, IL 60602 USA
基金
美国国家卫生研究院;
关键词
DYNAMICS;
D O I
10.1093/nar/gkaa996
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The Human Microbiome Project (HMP) explored microbial communities of the human body in both healthy and disease states. Two phases of the HMP (HMP and iHMP) together generated >48TB of data (public and controlled access) from multiple, varied omics studies of both the microbiome and associated hosts. The Human Microbiome Project Data Coordination Center (HMPDACC) was established to provide a portal to access data and resources produced by the HMP. The HMPDACC provides a unified data repository, multi-faceted search functionality, analysis pipelines and standardized protocols to facilitate community use of HMP data. Recent efforts have been put toward making HMP data more findable, accessible, interoperable and reusable. HMPDACC resources are freely available at www.hmpdacc.org.
引用
收藏
页码:D734 / D742
页数:9
相关论文
共 50 条
  • [1] A multi-omic future for microbiome studies
    Janet K. Jansson
    Erin S. Baker
    [J]. Nature Microbiology, 1 (5)
  • [2] A multi-omic future for microbiome studies
    Jansson, Janet K.
    Baker, Erin S.
    [J]. NATURE MICROBIOLOGY, 2016, 1 (05)
  • [3] Multi-omic approaches for host-microbiome data integration
    Chetty, Ashwin
    Blekhman, Ran
    [J]. GUT MICROBES, 2024, 16 (01)
  • [4] A multi-omic resource of mouse neutrophils
    Neff, Ellen P.
    [J]. LAB ANIMAL, 2021, 50 (09) : 239 - 239
  • [5] A multi-omic resource of mouse neutrophils
    Alexandra Le Bras
    [J]. Lab Animal, 2021, 50 : 239 - 239
  • [6] Multi-omic integration of microbiome data for identifying disease-associated modules
    Efrat Muller
    Itamar Shiryan
    Elhanan Borenstein
    [J]. Nature Communications, 15
  • [7] Explainable Machine Learning for Longitudinal Multi-Omic Microbiome
    Laccourreye, Paula
    Bielza, Concha
    Larranaga, Pedro
    [J]. MATHEMATICS, 2022, 10 (12)
  • [8] Multi-omic integration of microbiome data for identifying disease-associated modules
    Muller, Efrat
    Shiryan, Itamar
    Borenstein, Elhanan
    [J]. NATURE COMMUNICATIONS, 2024, 15 (01)
  • [9] Necrotizing Enterocolitis: A Multi-omic Approach and the Role of the Microbiome
    Josef Neu
    [J]. Digestive Diseases and Sciences, 2020, 65 : 789 - 796
  • [10] Necrotizing Enterocolitis: A Multi-omic Approach and the Role of the Microbiome
    Neu, Josef
    [J]. DIGESTIVE DISEASES AND SCIENCES, 2020, 65 (03) : 789 - 796