Elraglusib response prediction and mechanistic discovery using iterative machine learning

被引:0
|
作者
McDermott, Joseph
Weiskittel, Taylor
Billadeau, Daniel
Carneiro, Benedito
Li, Hu
Mazar, Andrew
机构
关键词
D O I
10.1158/1538-7445.AM2023-5355
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
5355
引用
收藏
页数:2
相关论文
共 50 条
  • [41] Optimizing prediction of response to antidepressant medications using machine learning and environmental data
    Spinrad, A.
    Darki-Morag, S.
    Taliaz, D.
    EUROPEAN PSYCHIATRY, 2021, 64 : S755 - S755
  • [42] Prediction of Antidepressant Treatment Response and Remission Using an Ensemble Machine Learning Framework
    Lin, Eugene
    Kuo, Po-Hsiu
    Liu, Yu-Li
    Yu, Younger W-Y
    Yang, Albert C.
    Tsai, Shih-Jen
    PHARMACEUTICALS, 2020, 13 (10) : 1 - 12
  • [43] Evaluation of Machine Learning Models for Aqueous Solubility Prediction in Drug Discovery
    Xue, Nian
    Zhang, Yuzhu
    Liu, Sensen
    2024 7TH INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND BIG DATA, ICAIBD 2024, 2024, : 26 - 33
  • [44] Machine Learning for Knowledge Discovery with R: Methodologies for Modeling, Inference, and Prediction
    Aszani, Aszani
    TECHNOMETRICS, 2023, 65 (04) : 607 - 609
  • [45] Machine learning for knowledge discovery with R: Methodologies for modeling, inference and prediction
    Hornung, Roman
    Boulesteix, Anne-Laure
    BIOMETRICAL JOURNAL, 2022, 64 (04) : 822 - 823
  • [46] Machine learning for knowledge discovery with R, methodologies for modeling, inference and prediction
    Chowdhry, Amit K.
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2022, 185 : S774 - S774
  • [47] A Machine Learning Enhanced Mechanistic Simulation Framework for Functional Deficit Prediction in TBI
    Schroder, Anna
    Lawrence, Tim
    Voets, Natalie
    Garcia-Gonzalez, Daniel
    Jones, Mike
    Pena, Jose-Maria
    Jerusalem, Antoine
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2021, 9
  • [48] Discovery in hydrating plaster using machine learning methods
    Devaney, JE
    Hagedorn, JG
    DISCOVERY SCIENCE, PROCEEDINGS, 2002, 2534 : 47 - 58
  • [49] Methodological framework for materials discovery using machine learning
    Lee, Eng Hock
    Jiang, Wei
    Alsalman, Hussain
    Low, Tony
    Cherkassky, Vladimir
    PHYSICAL REVIEW MATERIALS, 2022, 6 (04):
  • [50] Machine learning meets mechanistic modelling for accurate prediction of experimental activation energies
    Jorner, Kjell
    Brinck, Tore
    Norrby, Per-Ola
    Buttar, David
    CHEMICAL SCIENCE, 2021, 12 (03) : 1163 - 1175