Evaluation of Machine Learning Models for Aqueous Solubility Prediction in Drug Discovery

被引:0
|
作者
Xue, Nian [1 ]
Zhang, Yuzhu [2 ]
Liu, Sensen [3 ]
机构
[1] NYU, Dept Comp Sc & Engn, New York, NY USA
[2] Carnegie Mellon Univ, Sch Comp Sc, Pittsburgh, PA 15213 USA
[3] Washington Univ, Dept Elect & Syst Engn, St Louis, MO 63110 USA
关键词
Machine Learning; Solubility Prediction; Drug Discovery; Feature Importance; DESCRIPTORS; QSAR;
D O I
10.1109/ICAIBD62003.2024.10604556
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Determining the aqueous solubility of the chemical compound is of great importance in-silico drug discovery. However, correctly and rapidly predicting the aqueous solubility remains a challenging task. This paper explores and evaluates the predictability of multiple machine learning models in the aqueous solubility of compounds. Specifically, we apply a series of machine learning algorithms, including Random Forest, XG-Boost, LightGBM, and CatBoost, on a well-established aqueous solubility dataset (i.e., the Huuskonen dataset) of over 1200 compounds. Experimental results show that even traditional machine learning algorithms can achieve satisfactory performance with high accuracy. In addition, our investigation goes beyond mere prediction accuracy, delving into the interpretability of models to identify key features and understand the molecular properties that influence the predicted outcomes. This study sheds light on the ability to use machine learning approaches to predict compound solubility, significantly shortening the time that researchers spend on new drug discovery.
引用
收藏
页码:26 / 33
页数:8
相关论文
共 50 条
  • [1] Estimating the domain of applicability for machine learning QSAR models:: a study on aqueous solubility of drug discovery molecules
    Schroeter, Timon Sebastian
    Schwaighofer, Anton
    Mika, Sebastian
    Ter Laak, Antonius
    Suelzle, Detlev
    Ganzer, Ursula
    Heinrich, Nikolaus
    Mueller, Klaus-Robert
    JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2007, 21 (12) : 651 - 664
  • [2] Estimating the domain of applicability for machine learning QSAR models:: a study on aqueous solubility of drug discovery molecules
    Schroeter, Timon Sebastian
    Schwaighofer, Anton
    Mika, Sebastian
    Ter Laak, Antonius
    Suelzle, Detlev
    Ganzer, Ursula
    Heinrich, Nikolaus
    Mueller, Klaus-Robert
    JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2007, 21 (09) : 485 - 498
  • [3] Estimating the domain of applicability for machine learning QSAR models: a study on aqueous solubility of drug discovery molecules
    Timon Sebastian Schroeter
    Anton Schwaighofer
    Sebastian Mika
    Antonius Ter Laak
    Detlev Suelzle
    Ursula Ganzer
    Nikolaus Heinrich
    Klaus-Robert Müller
    Journal of Computer-Aided Molecular Design, 2007, 21 : 651 - 664
  • [4] Estimating the domain of applicability for machine learning QSAR models: a study on aqueous solubility of drug discovery molecules
    Timon Sebastian Schroeter
    Anton Schwaighofer
    Sebastian Mika
    Antonius Ter Laak
    Detlev Suelzle
    Ursula Ganzer
    Nikolaus Heinrich
    Klaus-Robert Müller
    Journal of Computer-Aided Molecular Design, 2007, 21 : 485 - 498
  • [5] Limits of Prediction for Machine Learning in Drug Discovery
    von Korff, Modest
    Sander, Thomas
    FRONTIERS IN PHARMACOLOGY, 2022, 13
  • [6] Pruned Machine Learning Models to Predict Aqueous Solubility
    Perryman, Alexander L.
    Inoyama, Daigo
    Patel, Jimmy S.
    Ekins, Sean
    Freundlich, Joel S.
    ACS OMEGA, 2020, 5 (27): : 16562 - 16567
  • [7] Experimental and Computational Screening Models for Prediction of Aqueous Drug Solubility
    Christel A. S. Bergström
    Ulf Norinder
    Kristina Luthman
    Per Artursson
    Pharmaceutical Research, 2002, 19 : 182 - 188
  • [8] Evaluation of Deep Learning Architectures for Aqueous Solubility Prediction
    Panapitiya, Gihan
    Girard, Michael
    Hollas, Aaron
    Sepulveda, Jonathan
    Murugesan, Vijayakumar
    Wang, Wei
    Saldanha, Emily
    ACS OMEGA, 2022, 7 (18): : 15695 - 15710
  • [9] Experimental and computational screening models for prediction of aqueous drug solubility
    Bergström, CAS
    Norinder, U
    Luthman, K
    Artursson, P
    PHARMACEUTICAL RESEARCH, 2002, 19 (02) : 182 - 188
  • [10] SolTranNet-A Machine Learning Tool for Fast Aqueous Solubility Prediction
    Francoeur, Paul G.
    Koes, David R.
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2021, 61 (06) : 2530 - 2536