Global agricultural ammonia emissions simulated with the ORCHIDEE land surface model

被引:5
|
作者
Beaudor, Maureen [1 ]
Vuichard, Nicolas [1 ]
Lathiere, Juliette [1 ]
Evangeliou, Nikolaos [2 ]
Van Damme, Martin [3 ,4 ]
Clarisse, Lieven [3 ]
Hauglustaine, Didier [1 ]
机构
[1] UVSQ, Lab Sci Climat & Environm LSCE, CNRS, CEA, Gif Sur Yvette, France
[2] Norwegian Inst Air Res NILU, Dept Atmospher & Climate Res, ATMOS, Kjeller, Norway
[3] Univ libre Bruxelles ULB, Spect Quantum Chem & Atmospher Remote Sensing SQU, Brussels, Belgium
[4] Royal Belgian Inst Space Aeron, Brussels, Belgium
基金
欧盟地平线“2020”;
关键词
ATMOSPHERIC AMMONIA; NITRATE AEROSOLS; FIRE EMISSIONS; GAS EMISSIONS; BOTTOM-UP; NITROGEN; INVENTORY; SYSTEM; MANURE; CHINA;
D O I
10.5194/gmd-16-1053-2023
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Ammonia (NH3) is an important atmospheric constituent. It plays a role in air quality and climate through the formation of ammonium sulfate and ammonium nitrate particles. It has also an impact on ecosystems through deposition processes. About 85 % of NH3 global anthropogenic emissions are related to food and feed production and, in particular, to the use of mineral fertilizers and manure management. Most global chemistry transport models (CTMs) rely on bottom-up emission inventories, which are subject to significant uncertainties. In this study, we estimate emissions from livestock by developing a new module to calculate ammonia emissions from the whole agricultural sector (from housing and storage to grazing and fertilizer application) within the ORCHIDEE (Organising Carbon and Hydrology In Dynamic Ecosystems) global land surface model. We detail the approach used for quantifying livestock feed management, manure application, and indoor and soil emissions and subsequently evaluate the model performance. Our results reflect China, India, Africa, Latin America, the USA, and Europe as the main contributors to global NH3 emissions, accounting for 80 % of the total budget. The global calculated emissions reach 44 TgNyr(-1) over the 2005-2015 period, which is within the range estimated by previous work. Key parameters (e.g., the pH of the manure, timing of N application, and atmospheric NH3 surface concentration) that drive the soil emissions have also been tested in order to assess the sensitivity of our model. Manure pH is the parameter to which modeled emissions are the most sensitive, with a 10 % change in emissions per percent change in pH. Even though we found an underestimation in our emissions over Europe (-26 %) and an overestimation in the USA (+56 %) compared with previous work, other hot spot regions are consistent. The calculated emission seasonality is in very good agreement with satellite-based emissions. These encouraging results prove the potential of coupling ORCHIDEE land-based emissions to CTMs, which are currently forced by bottom-up anthropogenic-centered inventories such as the CEDS (Community Emissions Data System).
引用
收藏
页码:1053 / 1081
页数:29
相关论文
共 50 条
  • [1] Oil palm modelling in the global land surface model ORCHIDEE-MICT
    Xu, Yidi
    Ciais, Philippe
    Yu, Le
    Li, Wei
    Chen, Xiuzhi
    Zhang, Haicheng
    Yue, Chao
    Kanniah, Kasturi
    Cracknell, Arthur P.
    Gong, Peng
    GEOSCIENTIFIC MODEL DEVELOPMENT, 2021, 14 (07) : 4573 - 4592
  • [2] Benefits of representing floodplains in a Land Surface Model: Pantanal simulated with ORCHIDEE CMIP6 version
    Schrapffer, Anthony
    Sorensson, Anna
    Polcher, Jan
    Fita, Lluis
    CLIMATE DYNAMICS, 2020, 55 (5-6) : 1303 - 1323
  • [3] Benefits of representing floodplains in a Land Surface Model: Pantanal simulated with ORCHIDEE CMIP6 version
    Anthony Schrapffer
    Anna Sörensson
    Jan Polcher
    Lluís Fita
    Climate Dynamics, 2020, 55 : 1303 - 1323
  • [4] Validation of a new global irrigation scheme in the land surface model ORCHIDEE v2.2
    Arboleda-Obando, Pedro Felipe
    Ducharne, Agnes
    Yin, Zun
    Ciais, Philippe
    GEOSCIENTIFIC MODEL DEVELOPMENT, 2024, 17 (05) : 2141 - 2164
  • [5] Weak sensitivity of the terrestrial water budget to global soil texture maps in the ORCHIDEE land surface model
    Tafasca, Salma
    Ducharne, Agnes
    Valentin, Christian
    HYDROLOGY AND EARTH SYSTEM SCIENCES, 2020, 24 (07) : 3753 - 3774
  • [6] Variational assimilation of land surface temperature within the ORCHIDEE Land Surface Model Version 1.2.6
    Pinjosovsky, Hector Simon Benavides
    Thiria, Sylvie
    Ottle, Catherine
    Brajard, Julien
    Badran, Fouad
    Maugis, Pascal
    GEOSCIENTIFIC MODEL DEVELOPMENT, 2017, 10 (01) : 85 - 104
  • [7] Tropical Peatland Hydrology Simulated With a Global Land Surface Model
    Apers, S.
    De Lannoy, G. J. M.
    Baird, A. J.
    Cobb, A. R.
    Dargie, G. C.
    Pasquel, J.
    Gruber, A.
    Hastie, A.
    Hidayat, H.
    Hirano, T.
    Hoyt, A. M.
    Jovani-Sancho, A. J.
    Katimon, A.
    Kurnain, A.
    Koster, R. D.
    Lampela, M.
    Mahanama, S. P. P.
    Melling, L.
    Page, S. E.
    Reichle, R. H.
    Taufik, M.
    Vanderborght, J.
    Bechtold, M.
    JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2022, 14 (03)
  • [8] GLOBAL COMPARISON OF SURFACE SOIL MOISTURE FROM THE ESA CCI COMBINED PRODUCT AND THE ORCHIDEE LAND-SURFACE MODEL
    Raoult, Nina
    Delorme, Bertrand
    Bastrikov, Vladislav
    Ottle, Catherine
    Peylin, Philippe
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 3711 - 3714
  • [9] Sensitivity of biogenic emissions simulated by a land-surface model to land-cover representations
    Gulden, Lindsey E.
    Yang, Zong-Liang
    Niu, Guo-Yue
    ATMOSPHERIC ENVIRONMENT, 2008, 42 (18) : 4185 - 4197
  • [10] Modeling the Vegetation Dynamics of Northern Shrubs and Mosses in the ORCHIDEE Land Surface Model
    Druel, Arsene
    Ciais, Philippe
    Krinner, Gerhard
    Peylin, Philippe
    JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2019, 11 (07) : 2020 - 2035