Global agricultural ammonia emissions simulated with the ORCHIDEE land surface model

被引:5
|
作者
Beaudor, Maureen [1 ]
Vuichard, Nicolas [1 ]
Lathiere, Juliette [1 ]
Evangeliou, Nikolaos [2 ]
Van Damme, Martin [3 ,4 ]
Clarisse, Lieven [3 ]
Hauglustaine, Didier [1 ]
机构
[1] UVSQ, Lab Sci Climat & Environm LSCE, CNRS, CEA, Gif Sur Yvette, France
[2] Norwegian Inst Air Res NILU, Dept Atmospher & Climate Res, ATMOS, Kjeller, Norway
[3] Univ libre Bruxelles ULB, Spect Quantum Chem & Atmospher Remote Sensing SQU, Brussels, Belgium
[4] Royal Belgian Inst Space Aeron, Brussels, Belgium
基金
欧盟地平线“2020”;
关键词
ATMOSPHERIC AMMONIA; NITRATE AEROSOLS; FIRE EMISSIONS; GAS EMISSIONS; BOTTOM-UP; NITROGEN; INVENTORY; SYSTEM; MANURE; CHINA;
D O I
10.5194/gmd-16-1053-2023
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Ammonia (NH3) is an important atmospheric constituent. It plays a role in air quality and climate through the formation of ammonium sulfate and ammonium nitrate particles. It has also an impact on ecosystems through deposition processes. About 85 % of NH3 global anthropogenic emissions are related to food and feed production and, in particular, to the use of mineral fertilizers and manure management. Most global chemistry transport models (CTMs) rely on bottom-up emission inventories, which are subject to significant uncertainties. In this study, we estimate emissions from livestock by developing a new module to calculate ammonia emissions from the whole agricultural sector (from housing and storage to grazing and fertilizer application) within the ORCHIDEE (Organising Carbon and Hydrology In Dynamic Ecosystems) global land surface model. We detail the approach used for quantifying livestock feed management, manure application, and indoor and soil emissions and subsequently evaluate the model performance. Our results reflect China, India, Africa, Latin America, the USA, and Europe as the main contributors to global NH3 emissions, accounting for 80 % of the total budget. The global calculated emissions reach 44 TgNyr(-1) over the 2005-2015 period, which is within the range estimated by previous work. Key parameters (e.g., the pH of the manure, timing of N application, and atmospheric NH3 surface concentration) that drive the soil emissions have also been tested in order to assess the sensitivity of our model. Manure pH is the parameter to which modeled emissions are the most sensitive, with a 10 % change in emissions per percent change in pH. Even though we found an underestimation in our emissions over Europe (-26 %) and an overestimation in the USA (+56 %) compared with previous work, other hot spot regions are consistent. The calculated emission seasonality is in very good agreement with satellite-based emissions. These encouraging results prove the potential of coupling ORCHIDEE land-based emissions to CTMs, which are currently forced by bottom-up anthropogenic-centered inventories such as the CEDS (Community Emissions Data System).
引用
收藏
页码:1053 / 1081
页数:29
相关论文
共 50 条
  • [41] Comparing surface-soil moisture from the SMOS mission and the ORCHIDEE land-surface model over the Iberian Peninsula
    Polcher, Jan
    Piles, Maria
    Gelati, Emiliano
    Barella-Ortiz, Anais
    Tello, Marivi
    REMOTE SENSING OF ENVIRONMENT, 2016, 174 : 69 - 81
  • [42] Natura 2000 and the Regulation of Agricultural Ammonia Emissions
    Anker, Helle Tegner
    Backes, Chris W.
    Baaner, Lasse
    Keessen, Andrea M.
    Moeckel, Stefan
    JOURNAL FOR EUROPEAN ENVIRONMENTAL & PLANNING LAW, 2019, 16 (04) : 340 - 371
  • [43] The potential of agricultural land management to contribute to lower global surface temperatures
    Mayer, Allegra
    Hausfather, Zeke
    Jones, Andrew D.
    Silver, Whendee L.
    SCIENCE ADVANCES, 2018, 4 (08):
  • [44] Testing the capability of ORCHIDEE land surface model to simulate Arctic ecosystems: Sensitivity analysis and site-level model calibration
    Dantec-Nedelec, S.
    Ottle, C.
    Wang, T.
    Guglielmo, F.
    Maignan, F.
    Delbart, N.
    Valdayskikh, V.
    Radchenko, T.
    Nekrasova, O.
    Zakharov, V.
    Jouzel, J.
    JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2017, 9 (02) : 1212 - 1230
  • [45] Improvement of the Irrigation Scheme in the ORCHIDEE Land Surface Model and Impacts of Irrigation on Regional Water Budgets Over China
    Yin, Z.
    Wang, X. H.
    Ottle, C.
    Zhou, F.
    Guimberteau, M.
    Polcher, J.
    Peng, S. S.
    Piao, S. L.
    Li, L.
    Bo, Y.
    Chen, X. L.
    Zhou, X. D.
    Kim, H.
    Ciais, P.
    JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2020, 12 (04)
  • [46] Simulated carbon emissions from land-use change are substantially enhanced by accounting for agricultural management
    Pugh, T. A. M.
    Arneth, A.
    Olin, S.
    Ahlstrom, A.
    Bayer, A. D.
    Goldewijk, K. Klein
    Lindeskog, M.
    Schurgers, G.
    ENVIRONMENTAL RESEARCH LETTERS, 2015, 10 (12):
  • [47] Global biogenic volatile organic compound emissions in the ORCHIDEE and MEGAN models and sensitivity to key parameters
    Messina, Palmira
    Lathiere, Juliette
    Sindelarova, Katerina
    Vuichard, Nicolas
    Granier, Claire
    Ghattas, Josefine
    Cozic, Anne
    Hauglustaine, Didier A.
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2016, 16 (22) : 14169 - 14202
  • [48] Impact of spin-up forcing on vegetation states simulated by a dynamic global vegetation model coupled with a land surface model
    Fang Li
    Xiaodong Zeng
    Xiang Song
    Dongxiao Tian
    Pu Shao
    Dongling Zhang
    Advances in Atmospheric Sciences, 2011, 28
  • [49] Impact of Spin-up Forcing on Vegetation States Simulated by a Dynamic Global Vegetation Model Coupled with a Land Surface Model
    李芳
    曾晓东
    宋翔
    田东晓
    邵璞
    张东凌
    Advances in Atmospheric Sciences, 2011, 28 (04) : 775 - 788
  • [50] Impact of spin-up forcing on vegetation states simulated by a dynamic global vegetation model coupled with a land surface model
    Li Fang
    Zeng Xiaodong
    Song Xiang
    Tian Dongxiao
    Shao Pu
    Zhang Dongling
    ADVANCES IN ATMOSPHERIC SCIENCES, 2011, 28 (04) : 775 - 788