Validation of a new global irrigation scheme in the land surface model ORCHIDEE v2.2

被引:2
|
作者
Arboleda-Obando, Pedro Felipe [1 ]
Ducharne, Agnes [1 ]
Yin, Zun [2 ]
Ciais, Philippe [3 ]
机构
[1] Sorbonne Univ, Lab METIS UMR 7619, IPSL, Lab METIS UMR 7619,EPHE, F-75005 Paris, France
[2] Princeton Univ, Program Atmospher & Ocean Sci, Princeton, NJ 08540 USA
[3] CNRS CEA UVSQ, CEA CNRS UVSQ, Lab Sci Climat & Environm, F-91191 Gif Sur Yvette, France
关键词
SENSITIVITY-ANALYSIS; INTEGRATED MODEL; WATER; GROUNDWATER; SIMULATION; CLIMATE; IMPACT; REPRESENTATION; EVAPORATION; FRAMEWORK;
D O I
10.5194/gmd-17-2141-2024
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Irrigation activities are important for sustaining food production and account for 70 % of total global water withdrawals. In addition, due to increased evapotranspiration (ET) and changes in the leaf area index (LAI), these activities have an impact on hydrology and climate. In this paper, we present a new irrigation scheme within the land surface model ORCHIDEE (ORganising Carbon and Hydrology in Dynamic EcosystEms)). It restrains actual irrigation according to available freshwater by including a simple environmental limit and using allocation rules that depend on local infrastructure. We perform a simple sensitivity analysis and parameter tuning to set the parameter values and match the observed irrigation amounts against reported values, assuming uniform parameter values over land. Our scheme matches irrigation withdrawals amounts at global scale, but we identify some areas in India, China, and the USA (some of the most intensively irrigated regions worldwide), where irrigation is underestimated. In all irrigated areas, the scheme reduces the negative bias of ET. It also exacerbates the positive bias of the leaf area index (LAI), except for the very intensively irrigated areas, where irrigation reduces a negative LAI bias. The increase in the ET decreases river discharge values, in some cases significantly, although this does not necessarily lead to a better representation of discharge dynamics. Irrigation, however, does not have a large impact on the simulated total water storage anomalies (TWSAs) and its trends. This may be partly explained by the absence of nonrenewable groundwater use, and its inclusion could increase irrigation estimates in arid and semiarid regions by increasing the supply. Correlation of irrigation biases with landscape descriptors suggests that the inclusion of irrigated rice and dam management could improve the irrigation estimates as well. Regardless of this complexity, our results show that the new irrigation scheme helps simulate acceptable land surface conditions and fluxes in irrigated areas, which is important to explore the joint evolution of climate, water resources, and irrigation activities.
引用
收藏
页码:2141 / 2164
页数:24
相关论文
共 50 条
  • [1] Improvement of the Irrigation Scheme in the ORCHIDEE Land Surface Model and Impacts of Irrigation on Regional Water Budgets Over China
    Yin, Z.
    Wang, X. H.
    Ottle, C.
    Zhou, F.
    Guimberteau, M.
    Polcher, J.
    Peng, S. S.
    Piao, S. L.
    Li, L.
    Bo, Y.
    Chen, X. L.
    Zhou, X. D.
    Kim, H.
    Ciais, P.
    JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2020, 12 (04)
  • [2] Integrated parameterization of irrigation in the land surface model ORCHIDEE. Validation over Indian Peninsula
    de Rosnay, P
    Polcher, J
    Laval, K
    Sabre, M
    GEOPHYSICAL RESEARCH LETTERS, 2003, 30 (19)
  • [3] The CRI v2.2 reduced degradation scheme for isoprene
    Jenkin, M. E.
    Khan, M. A. H.
    Shallcross, D. E.
    Bergstrom, R.
    Simpson, D.
    Murphy, K. L. C.
    Rickard, A. R.
    ATMOSPHERIC ENVIRONMENT, 2019, 212 : 172 - 182
  • [4] EC-Earth V2.2: description and validation of a new seamless earth system prediction model
    Hazeleger, W.
    Wang, X.
    Severijns, C.
    Stefanescu, S.
    Bintanja, R.
    Sterl, A.
    Wyser, K.
    Semmler, T.
    Yang, S.
    van den Hurk, B.
    van Noije, T.
    van der Linden, E.
    van der Wiel, K.
    CLIMATE DYNAMICS, 2012, 39 (11) : 2611 - 2629
  • [5] EC-Earth V2.2: description and validation of a new seamless earth system prediction model
    W. Hazeleger
    X. Wang
    C. Severijns
    S. Ştefănescu
    R. Bintanja
    A. Sterl
    K. Wyser
    T. Semmler
    S. Yang
    B. van den Hurk
    T. van Noije
    E. van der Linden
    K. van der Wiel
    Climate Dynamics, 2012, 39 : 2611 - 2629
  • [6] ORCHIDEE-MICT (v8.4.1), a land surface model for the high latitudes: model description and validation
    Guimberteau, Matthieu
    Zhu, Dan
    Maignan, Fabienne
    Huang, Ye
    Yue, Chao
    Dantec-Nedelec, Sarah
    Ottle, Catherine
    Jornet-Puig, Albert
    Bastos, Ana
    Laurent, Pierre
    Goll, Daniel
    Bowring, Simon
    Chang, Jinfeng
    Guenet, Bertrand
    Tifafi, Marwa
    Peng, Shushi
    Krinner, Gerhard
    Ducharne, Agnes
    Wang, Fuxing
    Wang, Tao
    Wang, Xuhui
    Wang, Yilong
    Yin, Zun
    Lauerwald, Ronny
    Joetzjer, Emilie
    Qiu, Chunjing
    Kim, Hyungjun
    Ciais, Philippe
    GEOSCIENTIFIC MODEL DEVELOPMENT, 2018, 11 (01) : 121 - 163
  • [7] Global agricultural ammonia emissions simulated with the ORCHIDEE land surface model
    Beaudor, Maureen
    Vuichard, Nicolas
    Lathiere, Juliette
    Evangeliou, Nikolaos
    Van Damme, Martin
    Clarisse, Lieven
    Hauglustaine, Didier
    GEOSCIENTIFIC MODEL DEVELOPMENT, 2023, 16 (03) : 1053 - 1081
  • [8] ASTEC V2.2 code validation: Illustrative results and main outcomes
    Chatelard, Patrick
    Laborde, Laurent
    NUCLEAR ENGINEERING AND DESIGN, 2023, 413
  • [9] Evaluation of an improved intermediate complexity snow scheme in the ORCHIDEE land surface model
    Wang, Tao
    Ottle, Catherine
    Boone, Aaron
    Ciais, Philippe
    Brun, Eric
    Morin, Samuel
    Krinner, Gerhard
    Piao, Shilong
    Peng, Shushi
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2013, 118 (12) : 6064 - 6079
  • [10] Oil palm modelling in the global land surface model ORCHIDEE-MICT
    Xu, Yidi
    Ciais, Philippe
    Yu, Le
    Li, Wei
    Chen, Xiuzhi
    Zhang, Haicheng
    Yue, Chao
    Kanniah, Kasturi
    Cracknell, Arthur P.
    Gong, Peng
    GEOSCIENTIFIC MODEL DEVELOPMENT, 2021, 14 (07) : 4573 - 4592