Semi-Supervised Building Detection from High-Resolution Remote Sensing Imagery

被引:0
|
作者
Zheng, Daoyuan [1 ,2 ]
Kang, Jianing [1 ,2 ]
Wu, Kaishun [1 ,3 ]
Feng, Yuting [1 ,2 ]
Guo, Han [1 ]
Zheng, Xiaoyun [1 ]
Li, Shengwen [1 ,2 ,3 ]
Fang, Fang [1 ,2 ,3 ]
机构
[1] Minist Nat Resources, Key Lab Urban Land Resources Monitoring & Simulat, Shenzhen 518034, Peoples R China
[2] China Univ Geosci, Sch Comp Sci, Wuhan 430074, Peoples R China
[3] China Univ Geosci, Natl Engn Res Ctr Geog Informat Syst, Wuhan 430074, Peoples R China
关键词
building detection; high-resolution remote sensing imagery; semi-supervised deep learning; object detection; consistency learning;
D O I
10.3390/su151511789
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Urban building information reflects the status and trends of a region's development and is essential for urban sustainability. Detection of buildings from high-resolution (HR) remote sensing images (RSIs) provides a practical approach for quickly acquiring building information. Mainstream building detection methods are based on fully supervised deep learning networks, which require a large number of labeled RSIs. In practice, manually labeling building instances in RSIs is labor-intensive and time-consuming. This study introduces semi-supervised deep learning techniques for building detection and proposes a semi-supervised building detection framework to alleviate this problem. Specifically, the framework is based on teacher-student mutual learning and consists of two key modules: the color and Gaussian augmentation (CGA) module and the consistency learning (CL) module. The CGA module is designed to enrich the diversity of building features and the quantity of labeled images for better training of an object detector. The CL module derives a novel consistency loss by imposing consistency of predictions from augmented unlabeled images to enhance the detection ability on the unlabeled RSIs. The experimental results on three challenging datasets show that the proposed framework outperforms state-of-the-art building detection methods and semi-supervised object detection methods. This study develops a new approach for optimizing the building detection task and a methodological reference for the various object detection tasks on RSIs.
引用
收藏
页数:22
相关论文
共 50 条
  • [41] Identification of shelterbelt width from high-resolution remote sensing imagery
    Deng, Rongxin
    Yang, Gao
    Li, Ying
    Xu, Zhengran
    Zhang, Xing
    Zhang, Lu
    Li, Chunjing
    AGROFORESTRY SYSTEMS, 2022, 96 (08) : 1091 - 1101
  • [42] Vehicle Detection From High-Resolution Remote Sensing Imagery Using Convolutional Capsule Networks
    Yu, Yongtao
    Gu, Tiannan
    Guan, Haiyan
    Li, Dilong
    Jin, Shenghua
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2019, 16 (12) : 1894 - 1898
  • [43] Learning Remote Sensing Aleatoric Uncertainty for Semi-Supervised Change Detection
    Shen, Jinhao
    Zhang, Cong
    Zhang, Mingwei
    Li, Qiang
    Wang, Qi
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [44] ScribbleCDNet: Change detection on high-resolution remote sensing imagery with scribble interaction
    Wang, Zhipan
    Xu, Minduan
    Wang, Zhongwu
    Guo, Qing
    Zhang, Qingling
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2024, 128
  • [45] Change detection of remote sensing images with semi-supervised multilayer perceptron
    Department of Computer Science and Engineering, Jadavpur University, Kolkata 700 032, India
    不详
    不详
    Fundam Inf, 2008, 3-4 (429-442):
  • [46] Change detection of remote sensing images with semi-supervised multilayer perceptron
    Patra, Swarnajyoti
    Ghosh, Susmita
    Ghosh, Ashish
    FUNDAMENTA INFORMATICAE, 2008, 84 (3-4) : 429 - 442
  • [47] Identification of shelterbelt width from high-resolution remote sensing imagery
    Rongxin Deng
    Gao Yang
    Ying Li
    Zhengran Xu
    Xing Zhang
    Lu Zhang
    Chunjing Li
    Agroforestry Systems, 2022, 96 : 1091 - 1101
  • [48] Semi-supervised Classification for Remote Sensing Datasets
    Hernandez-Sequeira, Itza
    Fernandez-Beltran, Ruben
    Xu, Yonghao
    Ghamisi, Pedram
    Pla, Filiberto
    IMAGE ANALYSIS AND PROCESSING, ICIAP 2023, PT I, 2023, 14233 : 463 - 474
  • [49] NFANet: A Novel Method for Weakly Supervised Water Extraction From High-Resolution Remote-Sensing Imagery
    Lu, Ming
    Fang, Leyuan
    Li, Muxing
    Zhang, Bob
    Zhang, Yi
    Ghamisi, Pedram
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [50] Multi-objective semi-supervised clustering for automatic pixel classification from remote sensing imagery
    Alok, Abhay Kumar
    Saha, Sriparna
    Ekbal, Asif
    SOFT COMPUTING, 2016, 20 (12) : 4733 - 4751