Learning Remote Sensing Aleatoric Uncertainty for Semi-Supervised Change Detection

被引:2
|
作者
Shen, Jinhao [1 ]
Zhang, Cong [2 ]
Zhang, Mingwei [1 ]
Li, Qiang [1 ]
Wang, Qi [1 ]
机构
[1] Northwestern Polytech Univ, Sch Artificial Intelligence Opt & Elect iOPEN, Xian 710072, Peoples R China
[2] Hong Kong Polytech Univ, Dept Elect & Elect Engn, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Uncertainty; Remote sensing; Unified modeling language; Training; Imaging; Task analysis; Pipelines; Change detection (CD); remote sensing; semi-supervised learning; uncertainty;
D O I
10.1109/TGRS.2024.3437250
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Significant progress has been recently achieved in the field of remote sensing image (RSI) change detection based on data-driven deep learning. Fully supervised models have limitations on the availability of massive annotated training data, while semi-supervised change detection (SSCD) has garnered increasingly widespread attention. Nevertheless, existing SSCD methods do not categorize the types of remote sensing aleatoric uncertainty (RSAU), let alone investigate the impact of uncertainty on performance. To this end, we define RSAU for SSCD and introduce the progressive uncertainty-aware and uncertainty-guided framework (PUF). It consists of two crucial components to perceive and guide the RSAU in the training stage. The first component, i.e., progressive uncertainty-aware learning (PUAL), decodes and quantifies the uncertainty inherent in the samples from the weak branch. The second one, i.e., uncertainty-guided multiview learning (UML), generates multiple image pairs designed for distortion and mixing for the strong branch. UML utilizes the uncertainty values derived from PUAL to offer guidance throughout the training process, which discerns and learns discriminative features from high-quality samples. Extensive experiments are conducted on three multiclass and building change detection (CD) benchmarks, i.e., CDD, SYSU, and LEVIR-CD. Furthermore, we propose a small dataset to enhance the understanding of aleatoric uncertainty, namely, LEVIR-AU. The proposed PUF consistently achieves state-of-the-art (SOTA) performance. The dataset and codes are available at https://github.com/shenjh0/PUF.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Prototype Discriminative Learning for Semi-Supervised Change Detection in Remote Sensing Images
    You, Zhi-Hui
    Chen, Si-Bao
    Wang, Jia-Xin
    Ding, Chris H. Q.
    Tang, Jin
    Luo, Bin
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [2] Reliable Contrastive Learning for Semi-Supervised Change Detection in Remote Sensing Images
    Wang, Jia-Xin
    Li, Teng
    Chen, Si-Bao
    Tang, Jin
    Luo, Bin
    Wilson, Richard C.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [3] Meta-Learning-Based Semi-Supervised Change Detection in Remote Sensing Images
    Tang, Yi
    Zhang, Liyi
    Zhang, Wuxia
    Jiang, Zuo
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2025, 63
  • [4] Change detection of remote sensing images with semi-supervised multilayer perceptron
    Department of Computer Science and Engineering, Jadavpur University, Kolkata 700 032, India
    不详
    不详
    Fundam Inf, 2008, 3-4 (429-442):
  • [5] Change detection of remote sensing images with semi-supervised multilayer perceptron
    Patra, Swarnajyoti
    Ghosh, Susmita
    Ghosh, Ashish
    FUNDAMENTA INFORMATICAE, 2008, 84 (3-4) : 429 - 442
  • [6] Robust Instance-Based Semi-Supervised Learning Change Detection for Remote Sensing Images
    Zuo, Yi
    Li, Lingling
    Liu, Xu
    Gao, Zihan
    Jiao, Licheng
    Liu, Fang
    Yang, Shuyuan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 15
  • [7] Remote Sensing Aircraft Image Detection Based on Semi-Supervised Learning
    Du Zexing
    Yin Jinyong
    Yang Jian
    LASER & OPTOELECTRONICS PROGRESS, 2020, 57 (06)
  • [8] SemiPSENet: A Novel Semi-Supervised Change Detection Network for Remote Sensing Images
    Hu, Lei
    Li, Supeng
    Ruan, Jiachen
    Gao, Feng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [9] ECPS: Cross Pseudo Supervision Based on Ensemble Learning for Semi-Supervised Remote Sensing Change Detection
    Yang, Yuqun
    Tang, Xu
    Ma, Jingjing
    Zhang, Xiangrong
    Pei, Shiji
    Jiao, Licheng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 17
  • [10] Remote Sensing Image Semantic Change Detection Boosted by Semi-Supervised Contrastive Learning of Semantic Segmentation
    Zhang, Xiuwei
    Yang, Yizhe
    Ran, Lingyan
    Chen, Liang
    Wang, Kangwei
    Yu, Lei
    Wang, Peng
    Zhang, Yanning
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 13