CONVERGENCE IN WASSERSTEIN DISTANCE FOR EMPIRICAL MEASURES OF SEMILINEAR SPDES

被引:3
|
作者
Wang, Feng-Yu [1 ]
机构
[1] Tianjin Univ, Ctr Appl Math, Tianjin, Peoples R China
来源
ANNALS OF APPLIED PROBABILITY | 2023年 / 33卷 / 01期
关键词
Wasserstein distance; empirical measure; semilinear SPDE; convergence rate;
D O I
10.1214/22-AAP1807
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The convergence rate in Wasserstein distance is estimated for the em-pirical measures of symmetric semilinear SPDEs. Unlike in the finite -dimensional case that the convergence is of algebraic order in time, in the present situation the convergence is of log order with a power given by eigen-values of the underlying linear operator.
引用
收藏
页码:70 / 84
页数:15
相关论文
共 50 条
  • [41] Wasserstein distance and the rectifiability of doubling measures: part I
    Jonas Azzam
    Guy David
    Tatiana Toro
    Mathematische Annalen, 2016, 364 : 151 - 224
  • [42] On Convergence in Wasserstein Distance and f-divergence Minimization Problems
    Li, Cheuk Ting
    Zhang, Jingwei
    Farnia, Farzan
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 238, 2024, 238
  • [43] CONVERGENCE OF STOCHASTIC EMPIRICAL MEASURES
    BERAN, RJ
    LECAM, L
    MILLAR, PW
    JOURNAL OF MULTIVARIATE ANALYSIS, 1987, 23 (01) : 159 - 168
  • [44] Convergence of Weighted Empirical Measures
    Esunge, Julius N.
    Wu, Jie
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2014, 32 (05) : 802 - 819
  • [45] Convergence to equilibrium in Wasserstein distance for Fokker-Planck equations
    Bolley, Francois
    Gentil, Ivan
    Guillin, Arnaud
    JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 263 (08) : 2430 - 2457
  • [46] Fast convergence of empirical barycenters in Alexandrov spaces and the Wasserstein space
    Le Gouic, Thibaut
    Paris, Quentin
    Rigollet, Philippe
    Stromme, Austin J.
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2023, 25 (06) : 2229 - 2250
  • [47] Behavior of the empirical Wasserstein distance in R under moment conditions
    Dedecker, Jerome
    Merlevede, Florence
    ELECTRONIC JOURNAL OF PROBABILITY, 2019, 24
  • [48] INTEGRABILITY CONDITIONS FOR SDES AND SEMILINEAR SPDES
    Wang, Feng-Yu
    ANNALS OF PROBABILITY, 2017, 45 (05): : 3223 - 3265
  • [49] An Empirical Study of Self-Supervised Learning with Wasserstein Distance
    Yamada, Makoto
    Takezawa, Yuki
    Houry, Guillaume
    Dusterwald, Kira Michaela
    Sulem, Deborah
    Zhao, Han
    Tsai, Yao-Hung
    ENTROPY, 2024, 26 (11)
  • [50] Hormander's theorem for semilinear SPDEs
    Gerasimovics, Andris
    Hairer, Martin
    ELECTRONIC JOURNAL OF PROBABILITY, 2019, 24