Fast convergence of empirical barycenters in Alexandrov spaces and the Wasserstein space

被引:6
|
作者
Le Gouic, Thibaut [1 ]
Paris, Quentin [2 ]
Rigollet, Philippe [1 ]
Stromme, Austin J. [1 ]
机构
[1] MIT, Math Dept, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] Higher Sch Econ, Comp Sci Fac, Moscow, Russia
关键词
Wasserstein barycenters; Alexandrov spaces; rates of convergence; METRIC-MEASURE-SPACES; EXTRINSIC SAMPLE MEANS; CENTRAL-LIMIT-THEOREM; RICCI CURVATURE; CONVEX-FUNCTIONS; FRECHET MEANS; MANIFOLDS; CAT(1)-SPACES; EXISTENCE; GEOMETRY;
D O I
10.4171/JEMS/1234
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work establishes fast rates of convergence for empirical barycenters over a large class of geodesic spaces with curvature bounds in the sense of Alexandrov. More specifically, we show that parametric rates of convergence are achievable under natural conditions that character-ize the bi-extendibility of geodesics emanating from a barycenter. These results largely advance the state-of-the-art on the subject both in terms of rates of convergence and the variety of spaces covered. In particular, our results apply to infinite-dimensional spaces such as the 2-Wasserstein space, where bi-extendibility of geodesics translates into regularity of Kantorovich potentials.
引用
收藏
页码:2229 / 2250
页数:22
相关论文
共 50 条
  • [1] Absolute Continuity of Wasserstein Barycenters Over Alexandrov Spaces
    Jiang, Yin
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2017, 69 (05): : 1087 - 1108
  • [2] BARYCENTERS IN THE WASSERSTEIN SPACE
    Agueh, Martial
    Carlier, Guillaume
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2011, 43 (02) : 904 - 924
  • [3] Fast Computation of Wasserstein Barycenters
    Cuturi, Marco
    Doucet, Arnaud
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 32 (CYCLE 2), 2014, 32 : 685 - 693
  • [4] PENALIZATION OF BARYCENTERS IN THE WASSERSTEIN SPACE
    Bigot, Jeremie
    Cazelles, Elsa
    Papadakis, Nicolas
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2019, 51 (03) : 2261 - 2285
  • [5] Regularized Barycenters in the Wasserstein Space
    Cazelles, Elsa
    Bigot, Jeremie
    Papadakis, Nicolas
    [J]. GEOMETRIC SCIENCE OF INFORMATION, GSI 2017, 2017, 10589 : 83 - 90
  • [6] Barycenters in Alexandrov spaces of curvature bounded below
    Ohta, Shin-ichi
    [J]. ADVANCES IN GEOMETRY, 2012, 12 (04) : 571 - 587
  • [7] Quantitative stability of barycenters in the Wasserstein space
    Carlier, Guillaume
    Delalande, Alex
    Merigot, Quentin
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2024, 188 (3-4) : 1257 - 1286
  • [8] Quantitative stability of barycenters in the Wasserstein space
    Guillaume Carlier
    Alex Delalande
    Quentin Mérigot
    [J]. Probability Theory and Related Fields, 2024, 188 : 1257 - 1286
  • [9] Stochastic gradient descent for barycenters in Wasserstein space
    Backhoff, Julio
    Fontbona, Joaquin
    Rios, Gonzalo
    Tobar, Felipe
    [J]. JOURNAL OF APPLIED PROBABILITY, 2024,
  • [10] GRADIENT FLOWS ON WASSERSTEIN SPACES OVER COMPACT ALEXANDROV SPACES
    Ohta, Shin-ichi
    [J]. AMERICAN JOURNAL OF MATHEMATICS, 2009, 131 (02) : 475 - 516