An efficient visual exploration approach of geospatial vector big data on the web map

被引:0
|
作者
Liu, Zebang [1 ]
Chen, Luo [1 ,2 ]
Ma, Mengyu [1 ,2 ]
Yang, Anran [1 ,2 ]
Zhong, Zhinong [1 ,2 ]
Jing, Ning [1 ,2 ]
机构
[1] Natl Univ Def Technol, Coll Elect Sci & Technol, Changsha 410073, Hunan, Peoples R China
[2] Minist Nat Resources, Key Lab Nat Resources Monitoring & Supervis Southe, Changsha 410000, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Big data; Visual exploration; Multilevel; Real-time; VISUALIZATION;
D O I
10.1016/j.is.2023.102333
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The visual exploration of geospatial vector data has become an increasingly important part of the management and analysis of geospatial vector big data (GVBD). With the rapid growth of data scale, it is difficult to realize efficient visual exploration of GVBD by current visualization technologies even if parallel distributed computing technology is adopted. To fill the gap, this paper proposes a visual exploration approach of GVBD on the web map. In this approach, we propose the display-driven computing model and combine the traditional data-driven computing method to design an adaptive real-time visualization algorithm. At the same time, we design a pixel-quad-R tree spatial index structure. Finally, we realize the multilevel real-time interactive visual exploration of GVBD in a single machine by constructing the index offline to support the online computation for visualization, and all the visualization results can be calculated in real-time without the external cache occupation. The experimental results show that the approach outperforms current mainstream visualization methods and obtains the visualization results at any zoom level within 0.5 s, which can be well applied to multilevel real-time interactive visual exploration of the billion-scale GVBD.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Progressive transmission of vector map data over the World Wide Web
    Bertolotto, M
    Egenhofer, MJ
    GEOINFORMATICA, 2001, 5 (04) : 345 - 373
  • [42] Progressive Transmission of Vector Map Data over the World Wide Web
    Michela Bertolotto
    Max J. Egenhofer
    GeoInformatica, 2001, 5 : 345 - 373
  • [43] User Behavior Map: Visual Exploration for Cyber Security Session Data
    Chen, Siming
    Chen, Shuai
    Andrienko, Natalia
    Andrienko, Gennady
    Nguyen, Phong H.
    Turkay, Cagatay
    Thonnard, Olivier
    Yuan, Xiaoru
    2018 IEEE SYMPOSIUM ON VISUALIZATION FOR CYBER SECURITY (VIZSEC 2018), 2018,
  • [44] An Icon Map-based exploratory analytical approach for multivariate geospatial data
    Zhang XianFeng
    Liao ChunHua
    Liu Yu
    Li, Jonathan
    SCIENCE CHINA-INFORMATION SCIENCES, 2013, 56 (01) : 1 - 10
  • [45] Spatiotemporal mapping of urban trade and shopping patterns: A geospatial big data approach
    Feizizadeh, Bakhtiar
    Omarzadeh, Davoud
    Blaschke, Thomas
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2024, 128
  • [46] CLASSIFICATION ALGORITHMS FOR BIG DATA ANALYSIS, A MAP REDUCE APPROACH
    Ayma, V. A.
    Ferreira, R. S.
    Happ, P.
    Oliveira, D.
    Feitosaa, R.
    Costa, G.
    Plaza, A.
    Gamba, P.
    PIA15+HRIGI15 - JOINT ISPRS CONFERENCE, VOL. I, 2015, 40-3 (W2): : 17 - 21
  • [47] An Efficient Approach to Extract and Store Big Semantic Web Data Using Hadoop and Apache Spark GraphX
    Mohammed, Wria Mohammed Salih
    Maa, Alaa Khalil Ju
    ADCAIJ-ADVANCES IN DISTRIBUTED COMPUTING AND ARTIFICIAL INTELLIGENCE JOURNAL, 2024, 13
  • [48] Supporting Web-Based Visual Exploration of Large-Scale Raster Geospatial Data Using Binned Min-Max Quadtree
    Zhang, Jianting
    You, Simin
    SCIENTIFIC AND STATISTICAL DATABASE MANAGEMENT, 2010, 6187 : 379 - +
  • [49] Efficient Spark-Based Framework for Big Geospatial Data Query Processing and Analysis
    Aljawarneh, Isam Mashhour
    Bellavista, Paolo
    Corradi, Antonio
    Montanari, Rebecca
    Foschini, Luca
    Zanotti, Andrea
    2017 IEEE SYMPOSIUM ON COMPUTERS AND COMMUNICATIONS (ISCC), 2017, : 851 - 856
  • [50] Image graphs - a novel approach to visual data exploration
    Univ of California, Davis, United States
    Proc IEEE Visual Conf, (81-88):