An efficient visual exploration approach of geospatial vector big data on the web map

被引:0
|
作者
Liu, Zebang [1 ]
Chen, Luo [1 ,2 ]
Ma, Mengyu [1 ,2 ]
Yang, Anran [1 ,2 ]
Zhong, Zhinong [1 ,2 ]
Jing, Ning [1 ,2 ]
机构
[1] Natl Univ Def Technol, Coll Elect Sci & Technol, Changsha 410073, Hunan, Peoples R China
[2] Minist Nat Resources, Key Lab Nat Resources Monitoring & Supervis Southe, Changsha 410000, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Big data; Visual exploration; Multilevel; Real-time; VISUALIZATION;
D O I
10.1016/j.is.2023.102333
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The visual exploration of geospatial vector data has become an increasingly important part of the management and analysis of geospatial vector big data (GVBD). With the rapid growth of data scale, it is difficult to realize efficient visual exploration of GVBD by current visualization technologies even if parallel distributed computing technology is adopted. To fill the gap, this paper proposes a visual exploration approach of GVBD on the web map. In this approach, we propose the display-driven computing model and combine the traditional data-driven computing method to design an adaptive real-time visualization algorithm. At the same time, we design a pixel-quad-R tree spatial index structure. Finally, we realize the multilevel real-time interactive visual exploration of GVBD in a single machine by constructing the index offline to support the online computation for visualization, and all the visualization results can be calculated in real-time without the external cache occupation. The experimental results show that the approach outperforms current mainstream visualization methods and obtains the visualization results at any zoom level within 0.5 s, which can be well applied to multilevel real-time interactive visual exploration of the billion-scale GVBD.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Automatic Scaling Hadoop in the Cloud for Efficient Process of Big Geospatial Data
    Li, Zhenlong
    Yang, Chaowei
    Liu, Kai
    Hu, Fei
    Jin, Baoxuan
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2016, 5 (10)
  • [22] Efficient Exploration of Telco Big Data with Compression and Decaying
    Costa, Constantinos
    Chatzimilioudis, Georgios
    Zeinalipour-Yazti, Demetrios
    Mokbel, Mohamed F.
    2017 IEEE 33RD INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2017), 2017, : 1332 - 1343
  • [23] T-map: A topological approach to visual exploration of time-varying volume data
    Fujishiro, Issei
    Otsuka, Rieko
    Takahashi, Shigeo
    Takeshima, Yuriko
    HIGH-PERFORMANCE COMPUTING, 2008, 4759 : 176 - +
  • [24] Map generalization and schema transformation of geospatial data combined in a Web Service context
    Foerster, Theodor
    Lehto, Lassi
    Sarjakoski, Tapani
    Sarjakoski, L. Tiina
    Stoter, Jantien
    COMPUTERS ENVIRONMENT AND URBAN SYSTEMS, 2010, 34 (01) : 79 - 88
  • [25] Visual clarity of vector curve and its application in web map generalization
    An X.
    Cheng X.
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2020, 49 (02): : 245 - 255
  • [26] Using Chained Views and Follow-Up Queries to Assist the Visual Exploration of the Web of Big Linked Data
    Menin, Aline
    Do, Minh Nhat
    Freitas, Carla Dal Sasso
    Corby, Olivier
    Faron, Catherine
    Giboin, Alain
    Winckler, Marco
    INTERNATIONAL JOURNAL OF HUMAN-COMPUTER INTERACTION, 2024, 40 (02) : 224 - 240
  • [27] A Method of Geographic Vector Data Collection Based on Web Map
    Zhang Xiaonan
    Li Gaohang
    Chen Daming
    2022 34TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2022, : 2091 - 2096
  • [28] Visual Exploration of Big Spatio-Temporal Movement Data
    Xu, Jie
    Wang, Wuquan
    Li, Jie
    Zhang, Kang
    PROCEEDINGS OF 2015 IEEE INTERNATIONAL CONFERENCE ON PROGRESS IN INFORMATCS AND COMPUTING (IEEE PIC), 2015, : 363 - 368
  • [29] In-situ visual exploration over big raw data
    Bikakis, Nikos
    Maroulis, Stavros
    Papastefanatos, George
    Vassiliadis, Panos
    INFORMATION SYSTEMS, 2021, 95
  • [30] A Visual Programming Approach to Big Data Analytics
    Bockermann, Christian
    DESIGN, USER EXPERIENCE, AND USABILITY: USER EXPERIENCE DESIGN FOR DIVERSE INTERACTION PLATFORMS AND ENVIRONMENTS, PT II, 2014, 8518 : 393 - 404