An efficient visual exploration approach of geospatial vector big data on the web map

被引:0
|
作者
Liu, Zebang [1 ]
Chen, Luo [1 ,2 ]
Ma, Mengyu [1 ,2 ]
Yang, Anran [1 ,2 ]
Zhong, Zhinong [1 ,2 ]
Jing, Ning [1 ,2 ]
机构
[1] Natl Univ Def Technol, Coll Elect Sci & Technol, Changsha 410073, Hunan, Peoples R China
[2] Minist Nat Resources, Key Lab Nat Resources Monitoring & Supervis Southe, Changsha 410000, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Big data; Visual exploration; Multilevel; Real-time; VISUALIZATION;
D O I
10.1016/j.is.2023.102333
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The visual exploration of geospatial vector data has become an increasingly important part of the management and analysis of geospatial vector big data (GVBD). With the rapid growth of data scale, it is difficult to realize efficient visual exploration of GVBD by current visualization technologies even if parallel distributed computing technology is adopted. To fill the gap, this paper proposes a visual exploration approach of GVBD on the web map. In this approach, we propose the display-driven computing model and combine the traditional data-driven computing method to design an adaptive real-time visualization algorithm. At the same time, we design a pixel-quad-R tree spatial index structure. Finally, we realize the multilevel real-time interactive visual exploration of GVBD in a single machine by constructing the index offline to support the online computation for visualization, and all the visualization results can be calculated in real-time without the external cache occupation. The experimental results show that the approach outperforms current mainstream visualization methods and obtains the visualization results at any zoom level within 0.5 s, which can be well applied to multilevel real-time interactive visual exploration of the billion-scale GVBD.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Web-Based Visualization of Big Geospatial Vector Data
    Zouhar, Florian
    Senner, Ivo
    GEOSPATIAL TECHNOLOGIES FOR LOCAL AND REGIONAL DEVELOPMENT, 2020, : 59 - 74
  • [2] An Immersive Approach to the Visual Exploration of Geospatial Network Datasets
    Zhang, Meng-Jia
    Li, Jie
    Zhang, Kang
    PROCEEDINGS VRCAI 2016: 15TH ACM SIGGRAPH CONFERENCE ON VIRTUAL-REALITY CONTINUUM AND ITS APPLICATIONS IN INDUSTRY, 2016, : 381 - 390
  • [3] A hybrid prediction and search approach for flexible and efficient exploration of big data
    Jie Li
    Yongjian Sun
    Zhenhuan Lei
    Siming Chen
    Gennady Andrienko
    Natalia Andrienko
    Wei Chen
    Journal of Visualization, 2023, 26 : 457 - 475
  • [4] A hybrid prediction and search approach for flexible and efficient exploration of big data
    Li, Jie
    Sun, Yongjian
    Lei, Zhenhuan
    Chen, Siming
    Andrienko, Gennady
    Andrienko, Natalia
    Chen, Wei
    JOURNAL OF VISUALIZATION, 2023, 26 (02) : 457 - 475
  • [5] Efficient Geospatial Analytics on Time Series Big Data
    Al Jawameh, Isam Mashhour
    Bellavista, Paolo
    Corradi, Antonio
    Foschini, Luca
    Montanan, Rebecca
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2022), 2022, : 3002 - 3008
  • [6] Investigating visual exploration of geospatial data: An exploratory usability experiment for visual data mining
    Demsar, Urska
    COMPUTERS ENVIRONMENT AND URBAN SYSTEMS, 2007, 31 (05) : 551 - 571
  • [7] Enabling Standard Geospatial Capabilities in Spark for the Efficient Processing of Geospatial Big Data
    Engelinus, Jonathan
    Badard, Thierry
    Bernier, Eveline
    GEOGRAPHICAL INFORMATION SYSTEMS THEORY, APPLICATIONS AND MANAGEMENT, GISTAM 2018, 2019, 1061 : 133 - 148
  • [8] A CONCEPTUAL FRAMEWORK FOR USING GEOSPATIAL BIG DATA FOR WEB MAPPING
    Bandrova, Temenoujka
    Pashova, Lyubka
    8TH INTERNATIONAL CONFERENCE ON CARTOGRAPHY AND GIS, VOL. 1, 2020, : 521 - 534
  • [9] An open source web application for distributed geospatial data exploration
    Curry, Patrick A.
    Moosdorf, Nils
    SCIENTIFIC DATA, 2019, 6 (1)
  • [10] An open source web application for distributed geospatial data exploration
    Patrick A. Curry
    Nils Moosdorf
    Scientific Data, 6