Adaptive Marginalized Semantic Hashing for Unpaired Cross-Modal Retrieval

被引:18
|
作者
Luo, Kaiyi [1 ]
Zhang, Chao [1 ]
Li, Huaxiong [1 ]
Jia, Xiuyi [2 ]
Chen, Chunlin [1 ]
机构
[1] Nanjing Univ, Dept Control Sci & Intelligence Engn, Nanjing 210093, Peoples R China
[2] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing 210014, Peoples R China
基金
中国国家自然科学基金;
关键词
Cross-modal retrieval; unpaired hashing; adaptive margins; CODES;
D O I
10.1109/TMM.2023.3245400
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In recent years, Cross-Modal Hashing (CMH) has attracted much attention due to its fast query speed and efficient storage. Previous studies have achieved promising results for Cross-Modal Retrieval (CMR) by discovering discriminative hash codes and modality-specific hash functions. Nonetheless, most existing CMR works are subjected to some restrictions: 1) It is assumed that data of different modalities are fully paired, which is impractical in real applications due to sample missing and false data alignment, and 2) binary regression targets including the label matrix and binary codes are too rigid to effectively learn semantic-preserving hash codes and hash functions. To address these problems, this paper proposes an Adaptive Marginalized Semantic Hashing (AMSH) method which not only enhances the discrimination of latent representations and hash codes by adaptive margins, but can also be used for both paired and unpaired CMR. As a two-step method, in the first step, AMSH generates semantic-aware modality-specific latent representations with adaptively marginalized labels, thereby enlarging the distances between different classes, and exploiting the labels to preserve the inter-modal and intra-modal semantic similarities into latent representations and hash codes. In the second step, adaptive margin matrices are embedded into the hash codes, and enlarge the gaps between positive and negative bits, which improves the discrimination and robustness of hash functions. On this basis, AMSH generates similarity-preserving hash codes and robust hash functions without the strict one-to-one data correspondence requirement. Experiments are conducted on several benchmark datasets to demonstrate the superiority and flexibility of AMSH over some state-of-the-art CMR methods.
引用
收藏
页码:9082 / 9095
页数:14
相关论文
共 50 条
  • [41] Deep Semantic Correlation Learning based Hashing for Multimedia Cross-Modal Retrieval
    Gong, Xiaolong
    Huang, Linpeng
    Wang, Fuwei
    2018 IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2018, : 117 - 126
  • [42] Semi-supervised semantic factorization hashing for fast cross-modal retrieval
    Jiale Wang
    Guohui Li
    Peng Pan
    Xiaosong Zhao
    Multimedia Tools and Applications, 2017, 76 : 20197 - 20215
  • [43] Fast Semantic Preserving Hashing for Large-Scale Cross-Modal Retrieval
    Wang, Xingzhi
    Liu, Xin
    Peng, Shujuan
    Cheung, Yiu-ming
    Hu, Zhikai
    Wang, Nannan
    2019 19TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2019), 2019, : 1348 - 1353
  • [44] Semi-supervised semantic factorization hashing for fast cross-modal retrieval
    Wang, Jiale
    Li, Guohui
    Pan, Peng
    Zhao, Xiaosong
    MULTIMEDIA TOOLS AND APPLICATIONS, 2017, 76 (19) : 20197 - 20215
  • [45] Multi-attention based semantic deep hashing for cross-modal retrieval
    Zhu, Liping
    Tian, Gangyi
    Wang, Bingyao
    Wang, Wenjie
    Zhang, Di
    Li, Chengyang
    APPLIED INTELLIGENCE, 2021, 51 (08) : 5927 - 5939
  • [46] Deep noise mitigation and semantic reconstruction hashing for unsupervised cross-modal retrieval
    Cheng Zhang
    Yuan Wan
    Haopeng Qiang
    Neural Computing and Applications, 2024, 36 : 5383 - 5397
  • [47] Joint Specifics and Dual-Semantic Hashing Learning for Cross-Modal Retrieval
    Teng, Shaohua
    Lin, Shengjie
    Teng, Luyao
    Wu, Naiqi
    Zheng, Zefeng
    Fei, Lunke
    Zhang, Wei
    Neurocomputing, 2024, 565
  • [48] Semantic-Consistent and Multilayer Similarity Based Cross-Modal Hashing Retrieval
    Liu, Yuanyuan
    Wang, Xiaoyan
    Zhang, Yuxin
    Zhu, Lu
    Data Analysis and Knowledge Discovery, 2024, 8 (07) : 89 - 102
  • [49] Multi-kernel Hashing with Semantic Correlation Maximization for Cross-Modal Retrieval
    Yang, Guangfei
    Miao, Huanghui
    Tang, Jun
    Liang, Dong
    Wang, Nian
    IMAGE AND GRAPHICS (ICIG 2017), PT I, 2017, 10666 : 23 - 34
  • [50] Deep Semantic-Preserving Reconstruction Hashing for Unsupervised Cross-Modal Retrieval
    Cheng, Shuli
    Wang, Liejun
    Du, Anyu
    ENTROPY, 2020, 22 (11) : 1 - 22