Semi-supervised semantic factorization hashing for fast cross-modal retrieval

被引:17
|
作者
Wang, Jiale [1 ]
Li, Guohui [1 ]
Pan, Peng [1 ]
Zhao, Xiaosong [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Comp Sci & Technol, Wuhan 430074, Hubei, Peoples R China
关键词
Cross-modal hashing; Semi-supervised learning; Semantic factorization;
D O I
10.1007/s11042-017-4567-3
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Cross-modal hashing can effectively solve the large-scale cross-modal retrieval by integrating the advantages of traditional cross-modal analysis and hashing techniques. In cross-modal hashing, preserving semantic correlation is important and challenging. However, current hashing methods cannot well preserve the semantic correlation in hash codes. Supervised hashing requires labeled data which is difficult to obtain, and unsupervised hashing cannot effectively learn semantic correlation from multi-modal data. In order to effectively learn semantic correlation to improve hashing performance, we propose a novel approach: Semi-Supervised Semantic Factorization Hashing (S3FH), for large-scale cross-modal retrieval. The main purpose of S3FH is to improve semantic labels and factorize it into hash codes. It optimizes a joint framework which consists of three interactive parts, including semantic factorization, multi-graph learning and multi-modal correlation. Then, an efficient alternating algorithm is derived for optimizing S3FH. Extensive experiments on two real world multi-modal datasets demonstrate the effectiveness of S3FH.
引用
收藏
页码:20197 / 20215
页数:19
相关论文
共 50 条
  • [1] Semi-supervised semantic factorization hashing for fast cross-modal retrieval
    Jiale Wang
    Guohui Li
    Peng Pan
    Xiaosong Zhao
    Multimedia Tools and Applications, 2017, 76 : 20197 - 20215
  • [2] SEMI-SUPERVISED SEMANTIC-PRESERVING HASHING FOR EFFICIENT CROSS-MODAL RETRIEVAL
    Wang, Xingzhi
    Liu, Xin
    Hu, Zhikai
    Wang, Nannan
    Fan, Wentao
    Du, Ji-Xiang
    2019 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2019, : 1006 - 1011
  • [3] Semi-supervised discrete hashing for efficient cross-modal retrieval
    Xingzhi Wang
    Xin Liu
    Shu-Juan Peng
    Bineng Zhong
    Yewang Chen
    Ji-Xiang Du
    Multimedia Tools and Applications, 2020, 79 : 25335 - 25356
  • [4] Semi-supervised discrete hashing for efficient cross-modal retrieval
    Wang, Xingzhi
    Liu, Xin
    Peng, Shu-Juan
    Zhong, Bineng
    Chen, Yewang
    Du, Ji-Xiang
    MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (35-36) : 25335 - 25356
  • [5] Supervised Matrix Factorization Hashing for Cross-Modal Retrieval
    Tang, Jun
    Wang, Ke
    Shao, Ling
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2016, 25 (07) : 3157 - 3166
  • [6] Supervised Discrete Matrix Factorization Hashing For Cross-Modal Retrieval
    Wu, Fei
    Wu, Zhiyong
    Feng, Yujian
    Zhou, Jun
    Huang, He
    Li, Xinwei
    Dong, Xiwei
    Jing, Xiao Yuan
    PROCEEDINGS OF 2018 5TH IEEE INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND INTELLIGENCE SYSTEMS (CCIS), 2018, : 855 - 859
  • [7] Semantic Consistency Cross-Modal Retrieval With Semi-Supervised Graph Regularization
    Xu, Gongwen
    Li, Xiaomei
    Zhang, Zhijun
    IEEE ACCESS, 2020, 8 : 14278 - 14288
  • [8] Semi-Supervised Semi-Paired Cross-Modal Hashing
    Zhang, Xuening
    Liu, Xingbo
    Nie, Xiushan
    Kang, Xiao
    Yin, Yilong
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (07) : 6517 - 6529
  • [9] Semi-Supervised Knowledge Distillation for Cross-Modal Hashing
    Su, Mingyue
    Gu, Guanghua
    Ren, Xianlong
    Fu, Hao
    Zhao, Yao
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 662 - 675
  • [10] A semi-supervised cross-modal memory bank for cross-modal retrieval
    Huang, Yingying
    Hu, Bingliang
    Zhang, Yipeng
    Gao, Chi
    Wang, Quan
    NEUROCOMPUTING, 2024, 579