Magnetoresistance anomaly during the electrical triggering of a metal-insulator transition

被引:2
|
作者
Salev, Pavel [1 ]
Fratino, Lorenzo [2 ,3 ]
Sasaki, Dayne [4 ]
Bag, Soumen [2 ]
Takamura, Yayoi [4 ]
Rozenberg, Marcelo [2 ]
Schuller, Ivan K. [5 ,6 ]
机构
[1] Univ Denver, Dept Phys & Astron, Denver, CO 80210 USA
[2] Univ Paris Saclay, CNRS Lab Phys Solides, F-91405 Orsay, France
[3] CY Cergy Paris Univ, Lab Phys Theor & Modelisat, CNRS, UMR 8089, F-95302 Cergy Pontoise, France
[4] Univ Calif Davis, Dept Mat Sci & Engn, Davis, CA 95616 USA
[5] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA
[6] Univ Calif San Diego, Ctr Adv Nanosci, La Jolla, CA 92093 USA
关键词
All Open Access; Green;
D O I
10.1103/PhysRevB.108.174434
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Phase separation naturally occurs in a variety of magnetic materials and it often has a major impact on both electric and magnetotransport properties. In resistive switching systems, phase separation can be created on demand by inducing local switching, which provides an opportunity to tune the electronic and magnetic state of the device by applying voltage. Here we explore the magnetotransport properties in the ferromagnetic oxide La0.7Sr0.3MnO3 (LSMO) during the electrical triggering of an intrinsic metal-insulator transition (MIT), which produces volatile resistive switching. This switching occurs in a characteristic spatial pattern, i.e., the formation of a high-resistance barrier perpendicular to the current flow, enabling an electrically actuated ferromagnetic-paramagnetic-ferromagnetic phase separation. At the threshold voltage of the MIT triggering, both anisotropic and colossal magnetoresistances exhibit anomalies including a large increase in magnitude and a sign flip. Computational analysis revealed that these anomalies originate from the coupling between the switching-induced phase separation state and the intrinsic magnetoresistance of LSMO. This work demonstrates that driving the MIT material into an out-of-equilibrium resistive switching state provides the means for electrical control of the magnetotransport phenomena.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Metal-insulator phase transition and electrical switching in manganese dioxide
    A. L. Pergament
    V. P. Malinenko
    L. A. Aleshina
    V. V. Kolchigin
    Physics of the Solid State, 2012, 54 : 2486 - 2490
  • [22] Low field magnetoresistance at the metal-insulator transition in epitaxial manganite thin films
    de Andrés, A
    Taboada, S
    Colino, JM
    Ramírez, R
    García-Hernández, M
    Martínez, JL
    APPLIED PHYSICS LETTERS, 2002, 81 (02) : 319 - 321
  • [23] Quasiparticle Transformation during a Metal-Insulator Transition in Graphene
    Bostwick, Aaron
    McChesney, Jessica L.
    Emtsev, Konstantin V.
    Seyller, Thomas
    Horn, Karsten
    Kevan, Stephen D.
    Rotenberg, Eli
    PHYSICAL REVIEW LETTERS, 2009, 103 (05)
  • [24] Two-phase scenario for the metal-insulator transition in colossal magnetoresistance manganites
    Weisse, A
    Loos, J
    Fehske, H
    PHYSICAL REVIEW B, 2001, 64 (10)
  • [25] Magnetoresistance and magnetic field induced metal-insulator transition in intercalated amorphous carbon
    Kumari, L
    Subramanyam, SV
    MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 2006, 129 (1-3): : 48 - 53
  • [26] The magnetoresistance of compensated Ge:As at microwave frequencies in the vicinity of the metal-insulator phase transition
    A. I. Veinger
    A. G. Zabrodskii
    T. V. Tisnek
    Semiconductors, 2000, 34 : 746 - 754
  • [27] Giant negative magnetoresistance of (Ga,Mn)As/GaAs in the vicinity of a metal-insulator transition
    Oiwa, A
    Katsumoto, S
    Endo, A
    Hirasawa, M
    Iye, Y
    Ohno, H
    Matsukura, F
    Shen, A
    Sugawara, Y
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 1998, 205 (01): : 167 - 171
  • [28] Magnetoresistance across metal-insulator transition in VO2 micro crystals
    Singh, Davinder
    Yadav, C. S.
    Viswanath, B.
    MATERIALS LETTERS, 2017, 196 : 248 - 251
  • [29] The magnetoresistance of compensated Ge:As at microwave frequencies in the vicinity of the metal-insulator phase transition
    Veinger, AI
    Zabrodskii, AG
    Tisnek, TV
    SEMICONDUCTORS, 2000, 34 (07) : 746 - 754
  • [30] Magnetoresistance of granular Pt-C nanostructures close to the metal-insulator transition
    Porrati, F.
    Sachser, R.
    Huth, M.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2014, 26 (08)