Magnetoresistance anomaly during the electrical triggering of a metal-insulator transition

被引:2
|
作者
Salev, Pavel [1 ]
Fratino, Lorenzo [2 ,3 ]
Sasaki, Dayne [4 ]
Bag, Soumen [2 ]
Takamura, Yayoi [4 ]
Rozenberg, Marcelo [2 ]
Schuller, Ivan K. [5 ,6 ]
机构
[1] Univ Denver, Dept Phys & Astron, Denver, CO 80210 USA
[2] Univ Paris Saclay, CNRS Lab Phys Solides, F-91405 Orsay, France
[3] CY Cergy Paris Univ, Lab Phys Theor & Modelisat, CNRS, UMR 8089, F-95302 Cergy Pontoise, France
[4] Univ Calif Davis, Dept Mat Sci & Engn, Davis, CA 95616 USA
[5] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA
[6] Univ Calif San Diego, Ctr Adv Nanosci, La Jolla, CA 92093 USA
关键词
All Open Access; Green;
D O I
10.1103/PhysRevB.108.174434
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Phase separation naturally occurs in a variety of magnetic materials and it often has a major impact on both electric and magnetotransport properties. In resistive switching systems, phase separation can be created on demand by inducing local switching, which provides an opportunity to tune the electronic and magnetic state of the device by applying voltage. Here we explore the magnetotransport properties in the ferromagnetic oxide La0.7Sr0.3MnO3 (LSMO) during the electrical triggering of an intrinsic metal-insulator transition (MIT), which produces volatile resistive switching. This switching occurs in a characteristic spatial pattern, i.e., the formation of a high-resistance barrier perpendicular to the current flow, enabling an electrically actuated ferromagnetic-paramagnetic-ferromagnetic phase separation. At the threshold voltage of the MIT triggering, both anisotropic and colossal magnetoresistances exhibit anomalies including a large increase in magnitude and a sign flip. Computational analysis revealed that these anomalies originate from the coupling between the switching-induced phase separation state and the intrinsic magnetoresistance of LSMO. This work demonstrates that driving the MIT material into an out-of-equilibrium resistive switching state provides the means for electrical control of the magnetotransport phenomena.
引用
收藏
页数:10
相关论文
共 50 条
  • [11] METAL-INSULATOR TRANSITION
    MOTT, NF
    REVIEWS OF MODERN PHYSICS, 1968, 40 (04) : 677 - &
  • [12] Metal-insulator transition and novel magnetoresistance effects in amorphous carbon films
    Liu, Zhichao
    Zhen, Congmian
    Wang, Peiyu
    Wu, Chunfang
    Ma, Li
    Hou, Denglu
    CARBON, 2019, 148 : 512 - 517
  • [13] Peculiarities of the microwave magnetoresistance of compensated Ge:As near the metal-insulator transition
    Veinger, AI
    Zabrodskii, AG
    Tisnek, TV
    PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 2000, 218 (01): : 189 - 192
  • [14] Magnetoresistance of Ge-Si Whiskers in the Vicinity to Metal-Insulator Transition
    Druzhinin, A. A.
    Ostrovskii, I. P.
    Khoverko, Yu M.
    Liakh-Kaguy, N. S.
    PHYSICS AND CHEMISTRY OF SOLID STATE, 2018, 19 (02): : 130 - 133
  • [15] DIELECTRIC ANOMALY AND METAL-INSULATOR TRANSITION IN N-TYPE SILICON
    CASTNER, TG
    LEE, NK
    CIELOSZYK, GS
    SALINGER, GL
    PHYSICAL REVIEW LETTERS, 1975, 34 (26) : 1627 - 1630
  • [16] DIELECTRIC ANOMALY AND METAL-INSULATOR TRANSITION IN N-TYPE SILICON
    CASTNER, TG
    CIELOCZY.GS
    SALINGER, GL
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1974, 19 (03): : 198 - 198
  • [17] METAL-INSULATOR TRANSITION IN TRANSITION METAL OXIDES
    RICE, TM
    MCWHAN, DB
    IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 1970, 14 (03) : 251 - +
  • [18] METAL-INSULATOR TRANSITION IN TRANSITION METAL OXIDES
    RICE, TM
    MCWHAN, DB
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1970, 15 (02): : 155 - &
  • [19] METAL-INSULATOR TRANSITION IN TRANSITION METAL OXIDES
    HEINE, V
    MATTHEISS, LF
    JOURNAL OF PHYSICS PART C SOLID STATE PHYSICS, 1971, 4 (10): : L191 - +
  • [20] Metal-insulator phase transition and electrical switching in manganese dioxide
    Pergament, A. L.
    Malinenko, V. P.
    Aleshina, L. A.
    Kolchigin, V. V.
    PHYSICS OF THE SOLID STATE, 2012, 54 (12) : 2486 - 2490