On 3D printed polyvinylidene fluoride-based smart energy storage devices

被引:5
|
作者
Mehta, Ankush [1 ]
Singh, Rupinder [1 ]
Pabla, B. S. [1 ]
Kumar, Vinay [2 ]
机构
[1] Natl Inst Tech Teachers Training & Res, Mech Engn Dept, Sect 26, Chandigarh 160019, India
[2] Chandigarh Univ, Univ Ctr Res & Dev, Mohali, India
关键词
Polyvinylidene fluoride; melt flow index; twin-screw extruder; electrical properties; composite matrix; POLYMERS;
D O I
10.1177/08927057231208133
中图分类号
TB33 [复合材料];
学科分类号
摘要
Polyvinylidene fluoride (PVDF) is one of the established thermoplastics with inherent piezoelectric characteristics. In the past two decades, a lot of work has been reported on the use of virgin Polyvinylidene fluoride thermoplastics for sensing applications. But hitherto little has been reported on 3D printing of secondary (2 degrees) recycled Polyvinylidene fluoride as a smart energy storage device (ESD). This work is focused on exploring the possibilities for 3D printing of smart energy storage device comprising of Polyvinylidene fluoride having (melt flow index (MFI) 30 g/(10 min) as per ASTM D 1238) reinforced with MnO2 , graphite, ZnCl2, and N H-4 Cl in different weight proportions to form a feedstock filament for fused deposition modeling (FDM) in the first stage. The MFI of Polyvinylidene fluoride composites reinforced with MnO2 , graphite, ZnCl2, and N H-4 Cl (34.095, 8.480, 42.982, 11.807 g/(10 min) respectively) was ascertained for possible 3D printing on FDM. The results suggest that even with an acceptable MFI of prepared 2 degrees recycled Polyvinylidene fluoride, the same was not printable. Further for possible 3D printing on FDM, low-density polyethylene (LDPE) was blended in a Polyvinylidene fluoride matrix, and successful 3D printing-based energy storage device was prepared in the second stage. The study also highlights the mechanical, and morphological properties of Polyvinylidene fluoride composites have been improved after processing with a twin-screw extruder (TSE) by using different input parameters (screw temperature (T), screw speed (S), and load (L)). Overall, the study suggests that the proportion of LDPE, MnO2 , graphite, ZnCl2, and N H-4 Cl has a significant effect on the rheological, mechanical, and morphological properties. The results have been supported with scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and Fourier-transformed infrared spectroscopy (FTIR) analysis.
引用
收藏
页码:1921 / 1937
页数:17
相关论文
共 50 条
  • [21] Polyvinylidene Fluoride Energy Harvester with Boosting Piezoelectric Performance through 3D Printed Biomimetic Bone Structures
    Song, Li
    Dai, Ruixian
    Li, Yijun
    Wang, Qi
    Zhang, Chuhong
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2021, 9 (22) : 7561 - 7568
  • [22] Characterization of 3D Printed Piezoelectric Sensors Determiniation of d33 Piezoelectric Coefficient for 3D printed Polyvinylidene Fluoride Sensors
    Kirkpatrick, Max B.
    Tarbutton, Joshua A.
    Tue Le
    Lee, ChaBum
    2016 IEEE SENSORS, 2016,
  • [23] Recent advances in 3D printed electrode materials for electrochemical energy storage devices
    Mubarak, Suhail
    Dhamodharan, Duraisami
    Byun, Hun-Soo
    JOURNAL OF ENERGY CHEMISTRY, 2023, 81 : 272 - 312
  • [24] Recent advances in 3D printed electrode materials for electrochemical energy storage devices
    Suhail Mubarak
    Duraisami Dhamodharan
    Hun-Soo Byun
    Journal of Energy Chemistry , 2023, (06) : 272 - 312
  • [25] Review on Polyvinylidene Fluoride-Based Triboelectric Nanogenerators for Applications in Health Monitoring and Energy Harvesting
    Bindhu, Amrutha
    Arun, Anand Prabu
    Pathak, Madhvesh
    ACS APPLIED ELECTRONIC MATERIALS, 2024, 6 (01) : 47 - 72
  • [26] Influence of polyvinylpyrrolidone on the hydrophilic properties of polyvinylidene fluoride-based membranes
    T. M. Ermolinskaya
    L. A. Fen’ko
    A. V. Bil’dyukevich
    Theoretical Foundations of Chemical Engineering, 2009, 43 : 747 - 751
  • [27] 3D Printing of Polyvinylidene Fluoride Based Piezoelectric Nanocomposites: An Overview
    Koroglu, Levent
    Ayas, Erhan
    Ay, Nuran
    MACROMOLECULAR MATERIALS AND ENGINEERING, 2021, 306 (10)
  • [28] A Review on 3D Printed Smart Devices for 4D Printing
    Lee, Jeongwoo
    Kim, Ho-Chan
    Choi, Jae-Won
    Lee, In Hwan
    INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING-GREEN TECHNOLOGY, 2017, 4 (03) : 373 - 383
  • [29] A review on 3D printed smart devices for 4D printing
    Jeongwoo Lee
    Ho-Chan Kim
    Jae-Won Choi
    In Hwan Lee
    International Journal of Precision Engineering and Manufacturing-Green Technology, 2017, 4 : 373 - 383
  • [30] Influence of polyvinylpyrrolidone on the hydrophilic properties of polyvinylidene fluoride-based membranes
    Ermolinskaya, T. M.
    Fen'ko, L. A.
    Bil'dyukevich, A. V.
    THEORETICAL FOUNDATIONS OF CHEMICAL ENGINEERING, 2009, 43 (05) : 747 - 751