Laser Powder Bed Fusion Additive Manufacturing of Maraging Steel: A Review

被引:5
|
作者
Kizhakkinan, Umesh [1 ]
Seetharaman, Sankaranarayanan [2 ]
Raghavan, Nagarajan [3 ]
Rosen, David W. [4 ]
机构
[1] Singapore Univ Technol & Design, Digital Mfg & Design Ctr, Singapore 487372, Singapore
[2] Agcy Sci Technol & Res, Adv Remfg & Technol Ctr, Addit Mfg Industrialisat Grp, 3 Cleantech Loop, Singapore 637143, Singapore
[3] Singapore Univ Technol & Design, Engn Prod Dev, Singapore 487372, Singapore
[4] Agcy Sci Technol & Res, Inst High Performance Comp, Singapore 138632, Singapore
关键词
additive manufacturing; laser powder bed fusion; maraging steel; heat treatment; microstructure; mechanical properties; MECHANICAL-PROPERTIES; AUSTENITE REVERSION; BUILD ORIENTATION; HEAT-TREATMENT; MICROSTRUCTURAL CHARACTERIZATION; FATIGUE-STRENGTH; RESIDUAL-STRESS; STRAIN FIELDS; BEHAVIOR; PRECIPITATION;
D O I
10.1115/1.4062727
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Laser powder bed fusion (PBF/L) is a popular metal additive manufacturing (AM) process used to manufacture complex metallic 3D components. Maraging steel is one of the metals used in AM and it belongs to the class of ultra-high-strength steels used in aerospace and tooling industries. In the PBF/L process, a laser beam is used to melt and fuse the metal powder particles. This creates a high thermal gradient and rapid cooling of the melt pool results in columnar grains. The microstructure of AM part is entirely different from the conventionally manufactured case and this necessitates post-AM heat treatments. The current paper reviews the effects of printing parameters and heat treatment on microstructure and mechanical properties of PBF/L produced maraging steel 300 alloy. Tensile, impact, fracture, and fatigue properties of as-built and heat-treated PBF/L parts are discussed in detail.
引用
收藏
页数:24
相关论文
共 50 条
  • [21] On thermal properties of metallic powder in laser powder bed fusion additive manufacturing
    Zhang, Shanshan
    Lane, Brandon
    Whiting, Justin
    Chou, Kevin
    JOURNAL OF MANUFACTURING PROCESSES, 2019, 47 : 382 - 392
  • [22] Austenite Reversion Behavior of Maraging Steel Additivemanufactured by Laser Powder Bed Fusion
    Takata, Naoki
    Ito, Yuya
    Nishida, Ryoya
    Suzuki, Asuka
    Kobashi, Makoto
    Kato, Masaki
    ISIJ INTERNATIONAL, 2024, 64 (02) : 303 - 315
  • [23] Tailoring the nanostructure of laser powder bed fusion additively manufactured maraging steel
    Allam, T.
    Pradeep, K. G.
    Koehnen, P.
    Marshal, A.
    Schleifenbaum, J. H.
    Haase, C.
    ADDITIVE MANUFACTURING, 2020, 36
  • [24] Cracking susceptibility of maraging parts manufactured by laser powder bed fusion additive manufacturing: study on the powder characteristics and baseplate preheating influence
    Gil, E.
    Mancisidor, A. M.
    Iturrioz, A.
    Garciandia, F.
    San Sebastian, M.
    POWDER METALLURGY, 2023, 66 (05) : 416 - 426
  • [25] Effect of Process Parameters on Powder Bed Fusion Maraging Steel 300: A Review
    Rao B.S.
    Rao T.B.
    Lasers in Manufacturing and Materials Processing, 2022, 9 (3) : 338 - 375
  • [26] Laser melting modes in metal powder bed fusion additive manufacturing
    Zhao, Cang
    Shi, Bo
    Chen, Shuailei
    Du, Dong
    Sun, Tao
    Simonds, Brian J.
    Fezzaa, Kamel
    Rollett, Anthony D.
    REVIEWS OF MODERN PHYSICS, 2022, 94 (04)
  • [27] Additive Manufacturing Process Simulation of Laser Powder Bed Fusion and Benchmarks
    Ghabbour, Mina S.
    Qu, Xueyong
    Rome, Jacob I.
    SAMPE JOURNAL, 2024, 60 (04) : 26 - 31
  • [28] Identifying Uncertainty in Laser Powder Bed Fusion Additive Manufacturing Models
    Lopez, Felipe
    Witherell, Paul
    Lane, Brandon
    JOURNAL OF MECHANICAL DESIGN, 2016, 138 (11)
  • [29] Additive manufacturing of ceramics via the laser powder bed fusion process
    Ullah, Abid
    Shah, Mussadiq
    Ali, Zulfiqar
    Asami, Karim
    Rehman, Asif Ur
    Emmelmann, Claus
    INTERNATIONAL JOURNAL OF APPLIED CERAMIC TECHNOLOGY, 2025,
  • [30] Processing parameters in laser powder bed fusion metal additive manufacturing
    Oliveira, J. P.
    LaLonde, A. D.
    Ma, J.
    MATERIALS & DESIGN, 2020, 193