Prediction of weather using high-performance gradient boosting

被引:1
|
作者
Christopher, V. Bibin [1 ]
Sajan, R. Isaac [2 ]
Akhila, T. S. [3 ]
Kavitha, M. Joselin [4 ]
机构
[1] SRM Inst Sci & Technol, Dept Comp Technol, Kattankulathur Campus, Chengalpattu, Tamil Nadu, India
[2] Ponjesly Coll Engn, Dept Elect & Commun Engn, Alamparai 629003, Tamil Nadu, India
[3] Mar Ephraem Coll Engn & Technol, Dept Elect & Commun Engn, Marthandam, Tamilnadu, India
[4] Marthandam Coll Engn & Technol, Dept Elect & Commun Engn, Kuttakuzhi 629177, Tamil Nadu, India
关键词
light gradient boosting machine; light GBM; leaf-wise algorithm; precipitation; PRCP; temperature maximum; TMAX; temperature minimum; TMIN; weather forecasting;
D O I
10.1504/IJGW.2023.133219
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Our weather prediction technology is imprecise despite its many new uses. Thus, demand exists to adopt a new method that eliminates the system's drawbacks and accurately projects rain. Existing machine learning methods use more RAM, are hard to trim, take a long time to compute, and are hard to use for time series predicting datasets. A high-performance gradient-boosting framework-based decision tree algorithm predicts rain. We used light gradient boosting machine (Light GBM), a leaf-wise method with best-fitting models that eliminates overfitting better than other decision tree algorithms. Predicting continuous goal variables is faster, more efficient, and uses less memory. Rain is Seattle's trademark. This study uses the Seattle dataset of daily weather from 1948 to 2017. The goal is to compute DATE, PRCP, TMAX, TMIN, and RAIN at each break and create a final forecast based on the sampled light BGM that is more accurate than other boosting algorithms.
引用
收藏
页码:30 / 41
页数:13
相关论文
共 50 条
  • [31] Permeability prediction of petroleum reservoirs using stochastic gradient boosting regression
    Subasi, Abdulhamit
    El-Amin, Mohamed F.
    Darwich, Tarek
    Dossary, Mubarak
    JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2020, 13 (7) : 3555 - 3564
  • [32] Destination Earth: High-Performance Computing for Weather and Climate
    Wedi, Nils
    Bauer, Peter
    Sandu, Irina
    Hoffmann, Joern
    Sheridan, Sophia
    Cereceda, Rafael
    Quintino, Tiago
    Thiemert, Daniel
    Geenen, Thomas
    COMPUTING IN SCIENCE & ENGINEERING, 2022, 24 (06) : 29 - 37
  • [33] The Effect of Hyperparameter Optimization on the Estimation of Performance Metrics in Network Traffic Prediction using the Gradient Boosting Machine Model
    Mwita, Machoke
    Mbelwa, Jimmy
    Agbinya, Johnson
    Sam, Anael Elikana
    ENGINEERING TECHNOLOGY & APPLIED SCIENCE RESEARCH, 2023, 13 (03) : 10714 - 10720
  • [34] Bandwidth prediction for high-performance interconnections
    Deutsch, A
    Kopcsay, GV
    Coteus, PW
    Surovic, CW
    Dahlen, P
    Heckmann, DL
    Duan, DW
    50TH ELECTRONIC COMPONENTS & TECHNOLOGY CONFERENCE - 2000 PROCEEDINGS, 2000, : 256 - 266
  • [35] Performance analysis of the high-performance conjugate gradient benchmark on GPUs
    Phillips, Everett
    Fatica, Massimiliano
    INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS, 2016, 30 (01): : 28 - 38
  • [36] High-performance conjugate gradient performance improvement on the K computer
    Kumahata, Kiyoshi
    Minami, Kazuo
    Maruyama, Naoya
    INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS, 2016, 30 (01): : 55 - 70
  • [37] High alert drugs screening using gradient boosting classifier
    Wongyikul, Pakpoom
    Thongyot, Nuttamon
    Tantrakoolcharoen, Pannika
    Seephueng, Pusit
    Khumrin, Piyapong
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [38] High-resolution short-T2MRI using a high-performance gradient
    Froidevaux, Romain
    Weiger, Markus
    Roesler, Manuela B.
    Brunner, David O.
    Dietrich, Benjamin E.
    Reber, Jonas
    Pruessmann, Klaas P.
    MAGNETIC RESONANCE IN MEDICINE, 2020, 84 (04) : 1933 - 1946
  • [39] Feature selection using ModifiedBoostARoota and prediction of heart diseases using Gradient Boosting algorithms
    Anuradha, P.
    David, Vasantha Kalyani
    2021 IEEE INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION, AND INTELLIGENT SYSTEMS (ICCCIS), 2021, : 19 - 23
  • [40] High-Performance Actionable Knowledge Miner for Boosting Business Revenue
    Tarnowska, Katarzyna A. A.
    Bagavathi, Arunkumar
    Ras, Zbigniew W. W.
    APPLIED SCIENCES-BASEL, 2022, 12 (23):