Prediction of weather using high-performance gradient boosting

被引:1
|
作者
Christopher, V. Bibin [1 ]
Sajan, R. Isaac [2 ]
Akhila, T. S. [3 ]
Kavitha, M. Joselin [4 ]
机构
[1] SRM Inst Sci & Technol, Dept Comp Technol, Kattankulathur Campus, Chengalpattu, Tamil Nadu, India
[2] Ponjesly Coll Engn, Dept Elect & Commun Engn, Alamparai 629003, Tamil Nadu, India
[3] Mar Ephraem Coll Engn & Technol, Dept Elect & Commun Engn, Marthandam, Tamilnadu, India
[4] Marthandam Coll Engn & Technol, Dept Elect & Commun Engn, Kuttakuzhi 629177, Tamil Nadu, India
关键词
light gradient boosting machine; light GBM; leaf-wise algorithm; precipitation; PRCP; temperature maximum; TMAX; temperature minimum; TMIN; weather forecasting;
D O I
10.1504/IJGW.2023.133219
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Our weather prediction technology is imprecise despite its many new uses. Thus, demand exists to adopt a new method that eliminates the system's drawbacks and accurately projects rain. Existing machine learning methods use more RAM, are hard to trim, take a long time to compute, and are hard to use for time series predicting datasets. A high-performance gradient-boosting framework-based decision tree algorithm predicts rain. We used light gradient boosting machine (Light GBM), a leaf-wise method with best-fitting models that eliminates overfitting better than other decision tree algorithms. Predicting continuous goal variables is faster, more efficient, and uses less memory. Rain is Seattle's trademark. This study uses the Seattle dataset of daily weather from 1948 to 2017. The goal is to compute DATE, PRCP, TMAX, TMIN, and RAIN at each break and create a final forecast based on the sampled light BGM that is more accurate than other boosting algorithms.
引用
收藏
页码:30 / 41
页数:13
相关论文
共 50 条
  • [21] Prediction of Mechanical Properties of Polymer Materials Using Extreme Gradient Boosting on High Molecular Weight Polymers
    Phankokkruad, Manop
    Wacharawichanant, Sirirat
    COMPLEX, INTELLIGENT, AND SOFTWARE INTENSIVE SYSTEMS, 2019, 772 : 375 - 385
  • [22] Cost assessment and strength properties estimation of high-performance concrete using a histogram gradient boosting model integrated with individual and ensemble optimisation algorithm
    Fu, Jing
    INTERNATIONAL JOURNAL OF PAVEMENT ENGINEERING, 2025, 26 (01)
  • [23] Prediction of Rheological Parameters of Polymers Using the CatBoost Gradient Boosting Algorithm
    Chepurnenko A.S.
    Kondratieva T.N.
    Deberdeev T.R.
    Akopyan V.F.
    Avakov A.A.
    Chepurnenko V.S.
    Polymer Science - Series D, 2024, 17 (01) : 121 - 128
  • [24] Prediction of Outcome in Acute Lower Gastrointestinal Bleeding Using Gradient Boosting
    Ayaru, Lakshmana
    Ypsilantis, Petros-Pavlos
    Nanapragasam, Abigail
    Choi, Ryan Chang-Ho
    Thillanathan, Anish
    Min-Ho, Lee
    Montana, Giovanni
    PLOS ONE, 2015, 10 (07):
  • [25] Permeability prediction of petroleum reservoirs using stochastic gradient boosting regression
    Abdulhamit Subasi
    Mohamed F. El-Amin
    Tarek Darwich
    Mubarak Dossary
    Journal of Ambient Intelligence and Humanized Computing, 2022, 13 : 3555 - 3564
  • [26] Short Term Power Demand Prediction Using Stochastic Gradient Boosting
    Nassif, Ali Bou
    2016 5TH INTERNATIONAL CONFERENCE ON ELECTRONIC DEVICES, SYSTEMS AND APPLICATIONS (ICEDSA), 2016,
  • [27] Legal Judgment Prediction in the Context of Energy Market using Gradient Boosting
    Franca, Joao V. F.
    Boaro, Jose M. C.
    dos Santos, Pedro T. C.
    Henrique, Fernando
    Garcia, Venicius
    Manfredini, Caio
    Junior, Domingos A. D.
    de Oliveira, Francisco Y. C.
    Castro, Carlos E. P.
    Braz Junior, Geraldo
    Silva, Aristofanes C.
    Paiva, Anselmo C.
    de Oliveira, Milton S. L.
    Moreira e Moraes, Renato U.
    Alves, Erika W. B. A. L.
    Sobral Neto, Jose S.
    2020 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2020, : 875 - 880
  • [28] Residual Stress Prediction of Welded Joints Using Gradient Boosting Regression
    Bhardwaj, Sachin
    Keprate, Arvind
    Ratnayake, R. M. C.
    INTELLIGENT TECHNOLOGIES AND APPLICATIONS, 2022, 1616 : 45 - 57
  • [29] Long-term travel time prediction using gradient boosting
    Chen, Che-Ming
    Liang, Chia-Ching
    Chu, Chih-Peng
    JOURNAL OF INTELLIGENT TRANSPORTATION SYSTEMS, 2020, 24 (02) : 109 - 124
  • [30] Prediction of compressive strength of recycled concrete using gradient boosting models
    Ahmed, Amira Hamdy Ali
    Jin, Wu
    Ali, Mosaad Ali Hussein
    AIN SHAMS ENGINEERING JOURNAL, 2024, 15 (09)