Uncertainty relations for metric adjusted skew information and Cauchy-Schwarz inequality

被引:2
|
作者
Hu, Xiaoli [1 ]
Jing, Naihuan [2 ,3 ]
机构
[1] Jianghan Univ, Sch Artificial Intelligence, Wuhan 430056, Hubei, Peoples R China
[2] North Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
[3] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Hubei, Peoples R China
关键词
uncertainty relations; skew information; Cauchy-Schwarz inequality; WIGNER;
D O I
10.1088/1612-202X/accce3
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Skew information is a pivotal concept in quantum information, quantum measurement, and quantum metrology. Further studies have lead to the uncertainty relations grounded in metric-adjusted skew information. In this work, we present an in-depth investigation using the methodologies of sampling coordinates of observables and convex functions to refine the uncertainty relations in both the product form of two observables and summation form of multiple observables.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Metric adjusted skew information and uncertainty relation
    Yanagi, Kenjiro
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 380 (02) : 888 - 892
  • [42] Bell inequality for qubits based on the Cauchy-Schwarz inequality
    Chen, Jing-Ling
    Deng, Dong-Ling
    PHYSICAL REVIEW A, 2009, 79 (01):
  • [43] Tighter sum uncertainty relations via metric-adjusted skew information
    Li, Hui
    Gao, Ting
    Yan, Fengli
    PHYSICA SCRIPTA, 2023, 98 (01)
  • [44] Product and sum uncertainty relations based on metric-adjusted skew information
    Ma, Xiaoyu
    Zhang, Qing-Hua
    Fei, Shao-Ming
    LASER PHYSICS LETTERS, 2022, 19 (05)
  • [45] Tighter sum uncertainty relations based on metric-adjusted skew information
    Ren, Ruonan
    Li, Ping
    Ye, Mingfei
    Li, Yongming
    PHYSICAL REVIEW A, 2021, 104 (05)
  • [46] REFINEMENTS OF THE CAUCHY-SCHWARZ INEQUALITY FOR τ-MEASURABLE OPERATORS
    Han, Yazhou
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2016, 10 (04): : 919 - 931
  • [47] A strengthened Cauchy-Schwarz inequality for biorthogonal wavelets
    De Rossi, A
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 1999, 2 (02): : 263 - 282
  • [48] REMARK ON A RECENT GENERALIZATION OF CAUCHY-SCHWARZ INEQUALITY
    MCLAUGHLIN, HW
    METCALF, FT
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1967, 18 (03) : 522 - +
  • [49] A Cauchy-Schwarz type inequality for fuzzy integrals
    Caballero, J.
    Sadarangani, K.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (10) : 3329 - 3335
  • [50] Violation of the Cauchy-Schwarz Inequality with Matter Waves
    Kheruntsyan, K. V.
    Jaskula, J-C.
    Deuar, P.
    Bonneau, M.
    Partridge, G. B.
    Ruaudel, J.
    Lopes, R.
    Boiron, D.
    Westbrook, C. I.
    PHYSICAL REVIEW LETTERS, 2012, 108 (26)