Uncertainty relations for metric adjusted skew information and Cauchy-Schwarz inequality

被引:2
|
作者
Hu, Xiaoli [1 ]
Jing, Naihuan [2 ,3 ]
机构
[1] Jianghan Univ, Sch Artificial Intelligence, Wuhan 430056, Hubei, Peoples R China
[2] North Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
[3] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Hubei, Peoples R China
关键词
uncertainty relations; skew information; Cauchy-Schwarz inequality; WIGNER;
D O I
10.1088/1612-202X/accce3
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Skew information is a pivotal concept in quantum information, quantum measurement, and quantum metrology. Further studies have lead to the uncertainty relations grounded in metric-adjusted skew information. In this work, we present an in-depth investigation using the methodologies of sampling coordinates of observables and convex functions to refine the uncertainty relations in both the product form of two observables and summation form of multiple observables.
引用
收藏
页数:10
相关论文
共 50 条