Uncertainty relations for metric adjusted skew information and Cauchy-Schwarz inequality

被引:2
|
作者
Hu, Xiaoli [1 ]
Jing, Naihuan [2 ,3 ]
机构
[1] Jianghan Univ, Sch Artificial Intelligence, Wuhan 430056, Hubei, Peoples R China
[2] North Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
[3] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Hubei, Peoples R China
关键词
uncertainty relations; skew information; Cauchy-Schwarz inequality; WIGNER;
D O I
10.1088/1612-202X/accce3
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Skew information is a pivotal concept in quantum information, quantum measurement, and quantum metrology. Further studies have lead to the uncertainty relations grounded in metric-adjusted skew information. In this work, we present an in-depth investigation using the methodologies of sampling coordinates of observables and convex functions to refine the uncertainty relations in both the product form of two observables and summation form of multiple observables.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] On the Cauchy-Schwarz inequality
    Alzer, H
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 234 (01) : 6 - 14
  • [2] A CAUCHY-SCHWARZ INEQUALITY FOR DETERMINANTS
    MERINO, DI
    KRAFFT, O
    AMERICAN MATHEMATICAL MONTHLY, 1994, 101 (01): : 81 - 83
  • [3] A Note on the Cauchy-Schwarz Inequality
    Xiang, Jim X.
    AMERICAN MATHEMATICAL MONTHLY, 2013, 120 (05): : 456 - 459
  • [4] A note on uncertainty relations of metric-adjusted skew information
    Zhang, Qing-Hua
    Wu, Jing-Feng
    Ma, Xiaoyu
    Fei, Shao-Ming
    QUANTUM INFORMATION PROCESSING, 2023, 22 (02)
  • [5] A note on uncertainty relations of metric-adjusted skew information
    Qing-Hua Zhang
    Jing-Feng Wu
    Xiaoyu Ma
    Shao-Ming Fei
    Quantum Information Processing, 22
  • [6] Remark on Cauchy-Schwarz inequality
    Farhadian, Reza
    MATHEMATICAL GAZETTE, 2023, 107 (570): : 493 - 495
  • [7] A GENERALIZED CAUCHY-SCHWARZ INEQUALITY
    Hajja, Mowaffaq
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2015, 18 (03): : 893 - 899
  • [8] GENERALIZATION OF CAUCHY-SCHWARZ INEQUALITY
    CALLEBAUT, DK
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1965, 12 (03) : 491 - +
  • [9] More on the Cauchy-Schwarz Inequality
    Farhadian, Reza
    AMERICAN MATHEMATICAL MONTHLY, 2022,
  • [10] ON THE MATRIX CAUCHY-SCHWARZ INEQUALITY
    Sababheh, Mohammad
    Conde, Cristian
    Moradi, Hamid Reza
    OPERATORS AND MATRICES, 2023, 17 (02): : 525 - 526