Silicon nanoparticles encapsulated in Si3N4/carbon sheaths as an anode material for lithium-ion batteries

被引:5
|
作者
Brijesh, K. [1 ]
Ikhe, Amol Bhairuba [1 ]
Pyo, Myoungho [1 ]
机构
[1] Sunchon Natl Univ, Dept Adv Components & Mat Engn, Chungnam 57922, South Korea
关键词
silicon anode; silicon nitride; core-shell; Li-ion battery; PERFORMANCE; NITRIDE; FILM; NANOCOMPOSITE; CONVERSION; MECHANISM; PROGRESS;
D O I
10.1088/1361-6528/acc5f2
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Novel composite materials comprising of silicon nanoparticles (SiNPs) encapsulated with thin layers of silicon nitride and reduced graphene oxide shells (Si@Si3N4@rGO) are prepared using a simple and scalable method. The composite exhibits significantly improved cycling stability and rate capability compared to bare SiNPs. The presence of inactive alpha and beta phases of Si3N4 increases the mechanical endurance of SiNPs. Amorphous SiN (x) , which is possibly present with Si3N4, also contributes to high capacity and Li-ion migration. The rGO sheath enhances the electronic conduction and improves the rate capability. 15-Si@Si3N4@rGO, which is prepared by sintering SiNPs for 15 min at 1300 degrees C, spontaneous-coating GO on Si@Si3N4, and reducing GO to rGO, delivers the highest specific capacity of 1396 mAh g(-1) after 100 cycles at a current density of 0.5 A g(-1). The improved electrochemical performance of 15-Si@Si3N4@rGO is attributed to the unique combination of positive effects by Si3N4 and rGO shells, in which Si3N4 mitigates the issue of large volume changes of Si during charge/discharge, and rGO provides efficient electron conduction pathways. Si@Si3N4@rGO composites are likely to have great potential for a high-performance anode in lithium-ion batteries.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Si/Cu composite as anode material for lithium-ion batteries
    Zeng, Hong
    He, Yawen
    Chamas, Mohamad
    FRONTIERS IN ENERGY RESEARCH, 2022, 10
  • [22] Self-Assembly of Silicon@Oxidized Mesocarbon Microbeads Encapsulated in Carbon as Anode Material for Lithium-Ion Batteries
    Liu, Huitian
    Shan, Zhongqiang
    Huang, Wenlong
    Wang, Dongdong
    Lin, Zejing
    Cao, Zongjie
    Chen, Peng
    Meng, Shuxian
    Chen, Li
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (05) : 4715 - 4725
  • [24] Encapsulated Fe3O4 into tubular mesoporous carbon as a superior performance anode material for lithium-ion batteries
    Cao, Zhijie
    Ma, Xiaobo
    JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 815
  • [25] Crystalline silicon gels as anode material for lithium-ion batteries
    Flores-Lopez, S. L.
    Santos-Gomez, L. D.
    Rey-Raap, N.
    Camean, I.
    Garcia, A. B.
    Arenillas, A.
    Garcia-Granda, S.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2022, 78 : E96 - E97
  • [26] Enhanced electrochemical properties of ZnO encapsulated in carbon nanofibers as anode material for lithium-ion batteries
    Yuhao Li
    Mingyu Zhang
    Qizhong Huang
    Peng Zhou
    Ping Xu
    Zhenghao Guo
    Kaibin Dai
    Ionics, 2020, 26 : 4351 - 4361
  • [27] A review of silicon/carbon composite anode materials with an encapsulated structure for lithium-ion rechargeable batteries
    Wei, Jian
    Qin, Cong-Min
    Su, Huan
    Wang, Jia-Min
    Li, Xue-Ting
    Xinxing Tan Cailiao/New Carbon Materials, 2020, 35 (02): : 97 - 111
  • [28] Enhanced electrochemical properties of ZnO encapsulated in carbon nanofibers as anode material for lithium-ion batteries
    Li, Yuhao
    Zhang, Mingyu
    Huang, Qizhong
    Zhou, Peng
    Xu, Ping
    Guo, Zhenghao
    Dai, Kaibin
    IONICS, 2020, 26 (09) : 4351 - 4361
  • [29] Foam carbon loading Fe3O4 nanoparticles for superior lithium-ion batteries anode material
    Sun, Kailian
    Zhao, Hongbin
    Yao, Jian
    Zhang, Shouquan
    Xu, Jiaxiang
    IONICS, 2015, 21 (07) : 1901 - 1908
  • [30] Foam carbon loading Fe3O4 nanoparticles for superior lithium-ion batteries anode material
    Kailian Sun
    Hongbin Zhao
    Jian Yao
    Shouquan Zhang
    Jiaxiang Xu
    Ionics, 2015, 21 : 1901 - 1908