BlindFilter: Privacy-Preserving Spam Email Detection Using Homomorphic Encryption

被引:0
|
作者
Lee, Dongwon [1 ,2 ]
Ahn, Myeonghwan [2 ]
Kwak, Hyesun [2 ]
Hong, Jin B. [3 ]
Kim, Hyoungshick [1 ]
机构
[1] Sungkyunkwan Univ, Suwon, South Korea
[2] Seoul Natl Univ, Seoul, South Korea
[3] Univ Western Australia, Perth, WA, Australia
关键词
Spam detection; Homomorphic encryption;
D O I
10.1109/SRDS60354.2023.00014
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Spam filtering services typically operate via cloud outsourcing, which exposes sensitive and private email content to the cloud server spam filter. Homomorphic encryption (HE) can address this issue by ensuring that user emails remain encrypted throughout all stages of the spam detection process on the cloud server. However, existing HE-based approaches are computationally infeasible due to the nature of HE operations. This paper proposes BlindFilter, a distributed, lightweight, HE-based spam email detection approach that consists of clients and servers collaborating to perform spam detection operations securely. BlindFilter employs WordPiece encoding and a modified Naive Bayes classifier, mitigating the need for multiplications and comparisons that would be prohibitive in terms of computation when applied with HE. Our experimental results demonstrate the efficacy of BlindFilter, with F1 scores exceeding 97% across two public email datasets. Furthermore, BlindFilter proves to be efficient as it can process an email in an average of 482.78 milliseconds. Our analysis also reveals that BlindFilter is robust against model extraction attacks, in which malicious users attempt to deduce the features of BlindFilter from queryresponse pairs.
引用
收藏
页码:35 / 45
页数:11
相关论文
共 50 条
  • [41] Privacy-Preserving Naive Bayes Classification Using Fully Homomorphic Encryption
    Kim, Sangwook
    Omori, Masahiro
    Hayashi, Takuya
    Omori, Toshiaki
    Wang, Lihua
    Ozawa, Seiichi
    NEURAL INFORMATION PROCESSING (ICONIP 2018), PT IV, 2018, 11304 : 349 - 358
  • [42] AHEad: Privacy-preserving Online Behavioural Advertising using Homomorphic Encryption
    Helsloot, Leon J.
    Tillem, Gamze
    Erkin, Zekeriya
    2017 IEEE WORKSHOP ON INFORMATION FORENSICS AND SECURITY (WIFS), 2017,
  • [43] On Fully Homomorphic Encryption for Privacy-Preserving Deep Learning
    Hernandez Marcano, Nestor J.
    Moller, Mads
    Hansen, Soren
    Jacobsen, Rune Hylsberg
    2019 IEEE GLOBECOM WORKSHOPS (GC WKSHPS), 2019,
  • [44] Using homomorphic encryption for privacy-preserving collaborative decision tree classification
    Zhan, Justin
    2007 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DATA MINING, VOLS 1 AND 2, 2007, : 637 - 645
  • [45] A Privacy-Preserving Homomorphic Encryption Scheme for the Internet of Things
    Zouari, Jaweher
    Hamdi, Mohamed
    Kim, Tai-Hoon
    2017 13TH INTERNATIONAL WIRELESS COMMUNICATIONS AND MOBILE COMPUTING CONFERENCE (IWCMC), 2017, : 1939 - 1944
  • [46] Efficient homomorphic encryption framework for privacy-preserving regression
    Byun, Junyoung
    Park, Saerom
    Choi, Yujin
    Lee, Jaewook
    APPLIED INTELLIGENCE, 2023, 53 (09) : 10114 - 10129
  • [47] Privacy-preserving genotype imputation with fully homomorphic encryption
    Gursoy, Gamze
    Chielle, Eduardo
    Brannon, Charlotte M.
    Maniatakos, Michail
    Gerstein, Mark
    CELL SYSTEMS, 2022, 13 (02) : 173 - +
  • [48] Privacy-preserving cancer type prediction with homomorphic encryption
    Esha Sarkar
    Eduardo Chielle
    Gamze Gursoy
    Leo Chen
    Mark Gerstein
    Michail Maniatakos
    Scientific Reports, 13
  • [49] Efficient homomorphic encryption framework for privacy-preserving regression
    Junyoung Byun
    Saerom Park
    Yujin Choi
    Jaewook Lee
    Applied Intelligence, 2023, 53 : 10114 - 10129
  • [50] Privacy-Preserving Feature Selection with Fully Homomorphic Encryption
    Ono, Shinji
    Takata, Jun
    Kataoka, Masaharu
    Tomohiro, I
    Shin, Kilho
    Sakamoto, Hiroshi
    ALGORITHMS, 2022, 15 (07)