AHEad: Privacy-preserving Online Behavioural Advertising using Homomorphic Encryption

被引:0
|
作者
Helsloot, Leon J. [1 ]
Tillem, Gamze [1 ]
Erkin, Zekeriya [1 ]
机构
[1] Delft Univ Technol, Cyber Secur Grp, Dept Intelligent Syst, Mekelweg 4, NL-2628 CD Delft, Netherlands
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Online advertising is a rapidly growing industry, forming the primary source of income for many publishers that offer free web content. The practice of serving advertisements based on individuals' interests greatly improves the expected effectiveness of advertisements, and is believed to be beneficial to publishers and users alike. However, the widespread data collection required for such behavioural advertising sparks concerns over user privacy. In this paper, we present AHEad, a privacypreserving protocol for Online Behavioural Advertising that ensures user privacy by processing data in encrypted form. AHEad combines homomorphic encryption with a machine learning method commonly encountered in existing advertising systems. Advertisements are served based on detailed user profiles, while achieving performance linear in the size of user profiles. To the best of our knowledge, AHEad is the first protocol that preserves user privacy in behavioural advertising while allowing the use of detailed user profiles and machine learning methods.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Privacy-Preserving Decentralized Optimization Using Homomorphic Encryption
    Huo, Xiang
    Liu, Mingxi
    [J]. IFAC PAPERSONLINE, 2020, 53 (05): : 630 - 633
  • [2] Privacy-Preserving Federated Learning Using Homomorphic Encryption
    Park, Jaehyoung
    Lim, Hyuk
    [J]. APPLIED SCIENCES-BASEL, 2022, 12 (02):
  • [3] Privacy-preserving Surveillance Methods using Homomorphic Encryption
    Bowditch, William
    Abramson, Will
    Buchanan, William J.
    Pitropakis, Nikolaos
    Hall, Adam J.
    [J]. ICISSP: PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS SECURITY AND PRIVACY, 2020, : 240 - 248
  • [4] Privacy-Preserving Biometric Matching Using Homomorphic Encryption
    Pradel, Gaetan
    Mitchell, Chris
    [J]. 2021 IEEE 20TH INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS (TRUSTCOM 2021), 2021, : 494 - 505
  • [5] Privacy-Preserving Collective Learning With Homomorphic Encryption
    Paul, Jestine
    Annamalai, Meenatchi Sundaram Muthu Selva
    Ming, William
    Al Badawi, Ahmad
    Veeravalli, Bharadwaj
    Aung, Khin Mi Mi
    [J]. IEEE ACCESS, 2021, 9 : 132084 - 132096
  • [6] A privacy-preserving parallel and homomorphic encryption scheme
    Min, Zhaoe
    Yang, Geng
    Shi, Jingqi
    [J]. OPEN PHYSICS, 2017, 15 (01): : 135 - 142
  • [7] A Review of Homomorphic Encryption for Privacy-Preserving Biometrics
    Yang, Wencheng
    Wang, Song
    Cui, Hui
    Tang, Zhaohui
    Li, Yan
    [J]. SENSORS, 2023, 23 (07)
  • [8] Privacy-Preserving Collaborative Filtering Using Fully Homomorphic Encryption
    Jumonji, Seiya
    Sakai, Kazuya
    Sun, Min-Te
    Ku, Wei-Shinn
    [J]. 2022 IEEE 38TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2022), 2022, : 1551 - 1552
  • [9] Privacy-Preserving Collaborative Filtering Using Fully Homomorphic Encryption
    Jumonji, Seiya
    Sakai, Kazuya
    Sun, Min-Te
    Ku, Wei-Shinn
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (03) : 2961 - 2974
  • [10] Privacy-preserving iris authentication using fully homomorphic encryption
    Morampudi, Mahesh Kumar
    Prasad, Munaga V. N. K.
    Raju, U. S. N.
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (27-28) : 19215 - 19237