Adrenal Tumor Segmentation on U-Net: A Study About Effect of Different Parameters in Deep Learning

被引:0
|
作者
Solak, Ahmet [1 ]
Ceylan, Rahime [1 ]
Bozkurt, Mustafa Alper [2 ]
Cebeci, Hakan [2 ]
Koplay, Mustafa [2 ]
机构
[1] Konya Tech Univ, Dept Elect Elect Engn, Konya, Turkiye
[2] Selcuk Univ, Fac Med, Dept Radiol, Konya, Turkiye
关键词
Adrenal tumor; segmentation; U-Net; parameter analysis; deep learning; SYSTEM;
D O I
10.1142/S2196888823500161
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Adrenal lesions refer to abnormalities or growths that occur in the adrenal glands, which are located on top of each kidney. These lesions can be benign or malignant and can affect the function of the adrenal glands. This paper presents a study on adrenal tumor segmentation using a modified U-Net model with various parameter selection strategies. The study investigates the effect of fine-tuning parameters, including k-fold values and batch sizes, on segmentation performance. Additionally, the study evaluates the effectiveness of different preprocessing techniques, such as Discrete Wavelet Transform (DWT), Contrast Limited Adaptive Histogram Equalization (CLAHE), and Image Fusion, in enhancing segmentation accuracy. The results show that the proposed model outperforms the original U-Net model, achieving the highest scores for Dice, Jaccard, sensitivity, and specificity scores of 0.631, 0.533, 0.579, and 0.998, respectively, on the T1-weighted dataset with DWT applied. These results highlight the importance of parameter selection and preprocessing techniques in improving the accuracy of adrenal tumor segmentation using deep learning.
引用
收藏
页码:111 / 135
页数:25
相关论文
共 50 条
  • [41] Semantic segmentation of human cell nucleus using deep U-Net and other versions of U-Net models
    Yadavendra
    Chand, Satish
    NETWORK-COMPUTATION IN NEURAL SYSTEMS, 2022, 33 (3-4) : 167 - 186
  • [42] Effect of learning parameters on the performance of the U-Net architecture for cell nuclei segmentation from microscopic cell images
    Jena, Biswajit
    Digdarshi, Dishant
    Paul, Sudip
    Nayak, Gopal K.
    Saxena, Sanjay
    MICROSCOPY, 2023, 72 (03) : 249 - 264
  • [43] Cascaded atrous dual attention U-Net for tumor segmentation
    Yu-Cheng Liu
    Mohammad Shahid
    Wannaporn Sarapugdi
    Yong-Xiang Lin
    Jyh-Cheng Chen
    Kai-Lung Hua
    Multimedia Tools and Applications, 2021, 80 : 30007 - 30031
  • [44] Path aggregation U-Net model for brain tumor segmentation
    Lin, Fengming
    Wu, Qiang
    Liu, Ju
    Wang, Dawei
    Kong, Xiangmao
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (15) : 22951 - 22964
  • [45] Brain tumor segmentation using U-Net in conjunction with EfficientNet
    Lin, Shu-You
    Lin, Chun-Ling
    PEERJ COMPUTER SCIENCE, 2024, 10
  • [46] Modified U-Net for Automatic Brain Tumor Regions Segmentation
    Kaewrak, Keerati
    Soraghan, John
    Di Caterina, Gaetano
    Grose, Derek
    2019 27TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2019,
  • [47] Hybrid Pyramid U-Net Model for Brain Tumor Segmentation
    Kong, Xiangmao
    Sun, Guoxia
    Wu, Qiang
    Liu, Ju
    Lin, Fengming
    INTELLIGENT INFORMATION PROCESSING IX, 2018, 538 : 346 - 355
  • [48] Path aggregation U-Net model for brain tumor segmentation
    Fengming Lin
    Qiang Wu
    Ju Liu
    Dawei Wang
    Xiangmao Kong
    Multimedia Tools and Applications, 2021, 80 : 22951 - 22964
  • [49] Attention Convolutional U-Net for Automatic Liver Tumor Segmentation
    Bibi, Asima
    Khan, Muhammad Salman
    2021 INTERNATIONAL CONFERENCE ON FRONTIERS OF INFORMATION TECHNOLOGY (FIT 2021), 2021, : 102 - 107
  • [50] Cascaded atrous dual attention U-Net for tumor segmentation
    Liu, Yu-Cheng
    Shahid, Mohammad
    Sarapugdi, Wannaporn
    Lin, Yong-Xiang
    Chen, Jyh-Cheng
    Hua, Kai-Lung
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (20) : 30007 - 30031