Adrenal Tumor Segmentation on U-Net: A Study About Effect of Different Parameters in Deep Learning

被引:0
|
作者
Solak, Ahmet [1 ]
Ceylan, Rahime [1 ]
Bozkurt, Mustafa Alper [2 ]
Cebeci, Hakan [2 ]
Koplay, Mustafa [2 ]
机构
[1] Konya Tech Univ, Dept Elect Elect Engn, Konya, Turkiye
[2] Selcuk Univ, Fac Med, Dept Radiol, Konya, Turkiye
关键词
Adrenal tumor; segmentation; U-Net; parameter analysis; deep learning; SYSTEM;
D O I
10.1142/S2196888823500161
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Adrenal lesions refer to abnormalities or growths that occur in the adrenal glands, which are located on top of each kidney. These lesions can be benign or malignant and can affect the function of the adrenal glands. This paper presents a study on adrenal tumor segmentation using a modified U-Net model with various parameter selection strategies. The study investigates the effect of fine-tuning parameters, including k-fold values and batch sizes, on segmentation performance. Additionally, the study evaluates the effectiveness of different preprocessing techniques, such as Discrete Wavelet Transform (DWT), Contrast Limited Adaptive Histogram Equalization (CLAHE), and Image Fusion, in enhancing segmentation accuracy. The results show that the proposed model outperforms the original U-Net model, achieving the highest scores for Dice, Jaccard, sensitivity, and specificity scores of 0.631, 0.533, 0.579, and 0.998, respectively, on the T1-weighted dataset with DWT applied. These results highlight the importance of parameter selection and preprocessing techniques in improving the accuracy of adrenal tumor segmentation using deep learning.
引用
收藏
页码:111 / 135
页数:25
相关论文
共 50 条
  • [31] Improving brain tumor segmentation on MRI based on the deep U-net and residual units
    Yang, Tiejun
    Song, Jikun
    Li, Lei
    Tang, Qi
    JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY, 2020, 28 (01) : 95 - 110
  • [32] Automated Brain Tumor Diagnosis Using Deep Residual U-Net Segmentation Model
    Poonguzhali, R.
    Ahmad, Sultan
    Sivasankar, P. Thiruvannamalai
    Babu, S. Anantha
    Joshi, Pranav
    Joshi, Gyanendra Prasad
    Kim, Sung Won
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 74 (01): : 2179 - 2194
  • [33] AttU-NET: Attention U-Net for Brain Tumor Segmentation
    Wang, Sihan
    Li, Lei
    Zhuang, Xiahai
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2021, PT II, 2022, 12963 : 302 - 311
  • [34] Automatic liver segmentation using U-Net deep learning architecture for additive manufacturing
    Giri J.
    Sathish T.
    Sheikh T.
    Sunehriya N.
    Giri P.
    Chadge R.
    Mahatme C.
    Parthiban A.
    Interactions, 2024, 245 (01)
  • [35] Underwater U-Net: Deep Learning with U-Net for Visual Underwater Moving Object detection
    Bajpai, Vatsalya
    Sharma, Akhilesh
    Subudhi, Badri Narayan
    Veerakumar, T.
    Jakhetiya, Vinit
    OCEANS 2021: SAN DIEGO - PORTO, 2021,
  • [36] Segmentation of ovarian cyst using improved U-NET and hybrid deep learning model
    Kamala C
    Joshi Manisha Shivaram
    Multimedia Tools and Applications, 2024, 83 : 42645 - 42679
  • [37] Cyst segmentation on kidney tubules by means of U-Net deep-learning models
    Monaco, Simone
    Bussola, Nicole
    Butto, Sara
    Sona, Diego
    Apiletti, Daniele
    Jurman, Giuseppe
    Viola, Elisa
    Chierici, Marco
    Xinaris, Christodoulos
    Viola, Vincenzo
    2021 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2021, : 3923 - 3926
  • [38] Semantic segmentation and detection of satellite objects using U-Net model of deep learning
    Yadavendra
    Chand, Satish
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (30) : 44291 - 44310
  • [39] Segmentation of ovarian cyst using improved U-NET and hybrid deep learning model
    Kamala, C.
    Shivaram, Joshi Manisha
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (14) : 42645 - 42679
  • [40] Semantic segmentation and detection of satellite objects using U-Net model of deep learning
    Satish Yadavendra
    Multimedia Tools and Applications, 2022, 81 : 44291 - 44310